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ABSTRACT

We examine two categories of solution algorithms for the

large-scale multicommodity transshipment problem (MCTP):

resource direction and price direction. In the former

category we construct RDLB, a new algorithm which uses a

simplified projection method in the subgradient capacity

reallocations and conjugate subgradient directions with

approximate line search to provide better termination

conditions in the Lagrangean lower-bounding iteration. In

the latter category, we develop DDC, a dual decomposition,

and we introduce RSD(P) and RSD(A), new non-linear

decomposition algorithms for the MCTP based on penalty

transformations of the original problem and using restricted

simplicial decomposition.

Computational results are presented for four- and ten-

product versions of a problem with an underlying network of

3,300 nodes and 10,400 arcs. Results show RDLB stalls

before reaching optimality, apparently a common problem in

primal subgradient reallocations, while the RSD algorithms

reach near-optimal solutions up to 10 times faster than a

direct primal simplex-based solver, and display very

favorable convergence rates compared to DDC. As a final

test, RSD(A) and DDC are applied to a 100-product problem

totaling 330,000 nodes and 1,040,000 arcs. RSD(A) reaches

4



an acceptable solution within 4% of optimality in under 17

minutes, while DDC terminates after 68 minutes with a 12%

gap remaining around the optimal solution.
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I. INTRODUCTION

Minimum-cost single-commodity capacitated transshipment

problems are now solved routinely using primal network

simplex codes. See, for instance, (Bradley, Brown, and

Graves, 1977). However, when multiple products flow over

the same network, the pure network structure can be

confounded by the presence of constraints limiting the total

flow of all products on each arc. Thus, single-commodity

solvers may not be applied directly, and, as the number of

products increases, the size of the constraint matrix grows

so rapidly that conventional simplex solvers become useless.

Because it is a frequently encountered problem,

specialized algorithms for the multicommodity transshipment

problem (MCTP) have been widely studied and reported in the

literature. However, none of the methods has been so

generally successful that it dominates other methods, as

primal network algorithms do in the single-commodity arena.

This paper documents new algorithms for the MCTP which

fall into the broad categories of "resource-directive" and

"price-directive." The first algorithm is an enhancement of

a popular resource-directive approach using subgradient

optimization, but incorporating a simplified primal

projection together with conjugate subgradient directions in

the Lagrangean lower bound steps. The algorithm promises

/8



ease of computation in the primal restriction and improved

criteria for termination over previous algorithms, but

apparently shares a common problem of subgradient-based

resource-direction: stalling in the primal before reaching

optimality.

The set of price-directive algorithms we present

includes a variant of dual (Dantzig-Wolfe) decomposition and

a new family of decomposition algorithms using a penalty

transformation of the original MCTP to create a non-linear

master problem which is solved by restricted simplicial

decomposition. This is a unique approach to the MCTP not

previously attempted which exhibits superior convergence

rates in computational tests compared to other solution

methods. The algorithm is quite general and therefore

applicable to a wide variety of linear programs exhibiting

complicating constraints.

We introduce the MCTP in the following section, and then

give an overview of major solution approaches to the MCTP in

Section B, and a more detailed literature review in Section

C. The resource-directive algorithm is presented in Chapter

II and the price-directive algorithms in Chapter III.

Computational results appear in Chapter IV and Chapter V

presents conclusions and areas for future research.

9
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A. STATEMENT OF THE PROBLEM

The general form of linear program in which we are

interested is:

(LP) min cx (duals)

st AIX < bI  (u I )

A 2x = b 2  (u2 )

0 < x b3

where one set of constraints, A2x = b2 , 0 < x < b3 is

deemed to be easy to solve, and a second set, Aix bl,

complicates the problem. The vector u = (ul,u 2 ) is the set

of dual multipliers associated with the constraints with

ul < 0 and u2 unrestricted in sign.

The following notation will be used throughout this

presentation. We assume all products flow over the same

underlying network. Let IZI denote the cardinality of a set

Z.

T = (I,J) is a transshipment network with a set of nodes,

I, and a set of arcs, J.

P is the set of products flowing on T.

i I is a node of the network.

j E J is an arc in the network.

p E P is a product using network T.

Np is an (III xIJI) node-arc incidence matrix for each
product (N1 = ... = Nip,).

N is an (II'IP) x IJl'IPI) matrix with the Np matrices
along the diagonal, 0's elsewhere.

10



C = (Cl;.P..CJPl) is a vector of costs on the arcs,
length IJJiP1.

x = (xl,...,x,,...'xjpJ) is a vector of flows on the arcs,
length IJi_ JPJ.

b1  is a vector of joint capacities with length Jil

b2 = right hand side with

b2pi > 0 if product p has a supply at node i,

b2pi < 0 if product p has a demand at node i, and

b2pi = 0 otherwise.

A is a JJJ x jJJ'JPJ matrix (I,...,I).

We specialize LP to MCTP by letting A2 = N, b3 = bl, and

dropping the subscript on A,:

(MCTP) min cx (duals) (1.1)

st Ax < bI  (Ul) (1.2)

Nx = b2  (u2 ) (1.3)

0 < xp < b, for all p E P . (1.4)

The easy constraints are the single-product pure network

flow constraints (1.3,1.4), and the complicating constraints

are the joint capacitation constraints (1.2). We assume for

notational simplicity that all arcs have joint capacities,

although in practice only a subset have such restrictions.

For convenience, let

F = {xJNx = b2 , 0 < xp : b, for all p c P)

be the set of all feasible single-commodity flows with joint

capacity constraints relaxed. In the absence of the

1i



complicating these constraints (1.2), the MCTP decouples

into a set of independent single commodity networks.

The Lagrangean dual of MCTP with respect to the joint

capacity constraints is found by placing these constraints

in the objective with multipliers u_ < 0:

(LR) max min L(ul,x) cx - ul(Ax-bl)
ul O x O

st x E F

According to duality theory, if x* solves MCTP, then L(ul,x)

< cx* for uI < 0 and x E F. Furthermore, a solution

(Ul**,x**) to LR has L(ul**,x **) = cx*. Thus, we may use LR

to generate a lower bound on MCTP by fixing uI  0 and

solving the following problem:

(LR(ul)) min cx - ul(Ax-bl)

st x F,

and this bound will be tight if ul is chosen correctly.

Solving the Lagrangean dual generally allows some

constraints to be violated with penalty ul(Ax-bl). For any

x E F, we denote the set of violated constraints as

Jv= (jlJ E J, Ajx > b1j) . (1.5)

12



B. OVERVIEW OF SOLUTION TECHNIQUES

Solution methods for large-scale linear programs may be

divided into three broad categories: direct factorization

or compact inverse methods, indirect resource-directive

methods, and indirect price-directive methods. Factoriza-

tion approaches exploit specific structure inherent within

the constraints to produce a compact basis representation

with which the steps of a primal or dual simplex algorithm

may be performed. Direct factorization is not pursued in

this study (see, for instance, Graves and McBride, 1976).

The other two approaches, resource and price direction

are decompositions which divide the original problem into a

master problem and subproblems which exchange information to

solve the original problem indirectly by iteration.

The resource-directive approach solves the MCTP as a two

part minimization:

min min cx

y>O x>O

st Nx =b 2

x-y <0

Ay =b

yp b, for all p c P.

The vector y allocates joint capacities to the individual

commodities. For fixed y, the solution to the inner

minimization is

13



(RS(y)) (y) = min cx

st Nx = b2

0 < x <y

which is the "subproblem" or "subproblems" since the

individual commodities are no longer coupled and may be

solved independently.

The outer minimization can now be written as

(RD) min V(y)

st Ay =b 1

yp b, for all p E P

y 0.

Standard methods for solving (RD) are Benders

decomposition and subgradient optimization. Benders

decomposition creates a master problem which makes

successive tangential approximations to V(y); the tangent

planes are derived by solving subproblems (RS(y)) whose

capacity (resource) allocations are determined by the master

problem. More details of Benders decomposition are given in

Chapter III but the method is not pursued because the master

problems become unwieldy.

Subgradient optimization solves (RD) in a fashion which

is analogous to a projected gradient algorithm which could

be used if V(y) were differentiable. Given a feasible

allocation yk in the kth iteration, a feasible reallocation

is obtained by

14



yk+l = yk + skdk

where sk is a scalar step length and dk is a feasible

direction. Since V(y) is not everywhere differentiable, dk

is a projected subgradient rather than a projected gradient.

Standard subgradient optimization does not use a line search

to determine sk since dk is not guaranteed to be a descent

direction. However, we devise an algorithm which performs

an approximate line search when applicable in the lower

bound routine. Subgradients are determined via solutions of

the subproblems RS(y); the master problem of this procedure

is the reallocation mechanism.

We present price direction as a class of penalty

problems,

max min cx + P(z,Ax-bl) (1.6)
z>O x

st x cF

where P(-) is a penalty term involving those constraints

deemed to be complicating. The vector z is determined

differently for various forms of P('), but in general is

involved in constructing an optimal vector of dual

multipliers.

Letting P(ul,Ax-bl) = -ul(Ax-bl), we see that (1.6)

becomes LR, -z = uI estimates the optimal dual multipliers,

and by fixing uI < 0, the inner minimization amounts to

solving the Lagrangean subproblem LR(ul).

15



Solution of the Lagrangean dual, i.e., (1.6) with linear

penalties, cannot guarantee an optimal solution to MCTP

although optimal ul* and x* for MCTP are in the set of

solutions to LR. Nevertheless, optimizing LR is useful for

bounding purposes and it is sometimes possible to obtain

good solutions to MCTP from LR. The method used in this

work to solve LR is subgradient optimization.

Subgradient optimization for LR simply updates the

multiplier estimates at each iteration k, by the formula

Ul k+ 1 = min (0,ulk - sk(Axk-bl))

while controlling the scalar steplengths sk , resolving the

Lagrangean to obtain a new xk+l and seeking feasibility only

indirectly via the penalty terms. The dual update mechanism

is the master problem for LR while the subproblems are

LR(ulk).

Standard dual (Dantzig-Wolfe) decomposition may be

interpreted as a special method of solving (1.6) with

piecewise-linear penalty function,

P(z,AX-bl) = -z(AX-bl)

and zj = if (Ax-bl)j > 0

zj = 0 if (Ax-bl)j < 0

zj [0,-) if (Ax-bl)j = 0

Z is determined by solving the master linear program of

Chapter III.A, yielding the duals ul = -z. Subproblem

16



solutions attempt to provide descent directions for this

penalty function.

P(*) may also take standard non-linear forms such as the

quadratic function, .5hIIQ(x) 112 , where z is replaced here

by the scalar h, Q(x) = (Ajx-blj)+ = max(O,Ajx-blj), and

I I I I denotes the Euclidean norm. Penalty function theory

tells us precisely how to solve this problem: solve the

inner minimization as h - -. As h -- , x - x* and h(Ax-bl)+

converges to an optimal set of dual multipliers.

However, starting with h large produces a highly ill-

conditioned problem, so the problem is usually solved for a

sequence of increasing values for h, producing a sequence of

improving, but infeasible solutions. An augmented

Lagrangean penalty function is investigated for reducing

ill-conditioning and speeding convergence.

A reasonable approach for solving these nonlinear

penalty problems is some feasible descent method. For fixed

h, feasible descent directions are derived for cx + P(h,Ax-

b) at x = x by solving the linear subproblem

min V(cx + P(h,Ax-bl))x

st x EF

to obtain x. The Frank-Wolfe algorithm (1956) would perform

a linear search in the direction x-x to obtain a new x and

iterate. This type of master problem tends to have poor

convergence in practice so we employ Restricted Simplicial

17
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Decomposition (Hearn et al., 1984) which maintains a

restricted set of extreme points of F together with x.

Instead of solving a simple line search the master problem

solves a nonlinear program over the convex hull of the

retained points. The loss of simplicity in the master

problem is typically offset by improved convergence of the

overall algorithm.

There is no strong rationale for replacing a hard linear

problem with a seemingly more difficult nonlinear problem.

Consequently, this approach has not previously been

considered for large-scale applications. However, we show

in Chapter III that this approach can be attractive.

18



C. SURVEY OF RELATED LITERATURE

This section reviews the literature which has led to the

current state of the art in algorithms for the MCTP. We

begin with a brief overview of single-commodity network

algorithms because of their computational importance in many

algorithms for the MCTP. We then mention prior

contributions to a few special cases of the MCTP, and

finally review literature on algorithms used to solve

general MCTPs.

Single-commodity network flow problems have been widely

studied since the 1940s, for two primary reasons: they are

frequently encountered and their special structure lends

itself to algorithms which are more efficient than general

linear programming techniques. The constraint matrix of the

pure network problem is a node-arc incidence matrix: all

O's and ±1's, with at most one +1 and one -1 per column.

This particular structure has three desirable properties:

total unimodularity, which guarantees integer primal

solutions given integer right-hand sides, and integer dual

solutions given integer costs, a basis matrix which may be

triangulated by permutation of rows and columns and thus

simplifying computation, and primal extreme point solutions

equivalent to spanning trees in the network. Several

algorithms were developed in the 1950s and 1960s which made

at least some use of these properties. Primal simplex

methods were proposed by Dantzig (1963) and Fulkerson and

19



Dantzig (1955). Primal-dual methods became popular in

practice at that time, including Kuhn's Hungarian Method

(1955) and the out-of-kilter algorithm of Ford and Fulkerson

(1962).

Primal-dual methods were favored throughout the 1960s,

but some works, most notably the basis-labelling scheme of

Johnson (1966), set the stage for research which led to the

efficient primal network algorithms in use today.

Subsequent research focused on efficient data structures and

their manipulation, which led to compact basis

representations and efficient performance of the simplex

pivot. Significant research was done in the 1970s by

Srinivasan and Thompson (1972,1973), Glover, Karney and

Klingman (1974), Glover, Karney, Klingman and Napier (1974),

Glover, Klingman and Stutz (1974), Barr, Glover, and

Klingman (1979), and Bradley, Brown and Graves (1977).

Results presented by these researchers demonstrated the

primal network simplex to be up to two orders of magnitude

faster, to require much less memory than general simplex

solvers, and to be about 40% faster than out-of-kilter

codes.

This research has given us network codes, such as GNET

(Bradley, Brown and Graves, 1977), which can solve large

(say, many thousands of nodes and arcs) single-commodity

network problems very efficiently. This research is doubly

20



important for the MCTP since it allows efficient subproblem

solution in many of the algorithms developed for the MCTP.

Some of the pure network structure found in the single-

commodity network problem carries over into the MCTP.

Single-product networks do appear as blocks along the

diagonal of the constraint matrix, but, unfortunately, the

joint capacity constraints couple the networks together and

generally destroy total unimodularity of the constraint

matrix, admitting fractional solutions and requiring real

arithmetic. It is appealing to try to restore total

unimodularity or product independence by transformation.

Some success in this area has been reported by Evans

(1976,1978a,1978b,1983) and by Evans, Jarvis and Duke

(1977). The class of problems for which their methods work

is quite restricted, however: total unimodularity is shown

to hold when the number of sources or sinks for each product

is less than or equal to 2, and the existence of

transformations to single-product networks is shown when the

number of sinks per product equals 2. Thus, this is of

little help to the general MCTP.

Algorithms for the general MCTP are broadly classified

as direct methods which exploit special structure using the

simplex algorithm or indirect methods which use some form of

decomposition. The indirect methods include price-direction

and resource-direction.

21



We first review the development of price-direction.

Recognizing that the number of extreme points in a master

problem may be huge, Ford and Fulkerson (1958) devised a

procedure for the multicommodity maximal flow problem which

uses column generation to produce favorable extreme points

as needed. In their formulation of the problem, the

variables correspond to chains or paths through the network,

and the constraints represent individual arcs. Dantzig and

Wolfe (1960) formalized the procedure into the dual

decomposition procedure in which the master problem is

solved to provide pricing information to the subproblems.

Solving the subproblems produces an extreme point, which is

added to the master problem if it is favorable, or indicates

optimality of the current master problem solution if it is

not.

Tomlin (1966) first formulated and implemented dual

decomposition for the minimum cost MCTP, showing the

equivalence of the Ford-Fulkerson algorithm to the algorithm

described by Dantzig and Wolfe. Others have developed

extensions of the MCTP using the dual-decomposition

approach. Cremeans, Smith and Tyndall (1970) and Wollmer

(1972) formulated a model in which flow on some arcs depends

on the availability of resources which are shared with other

arcs. Weigel and Cremeans (1972) extended the model to

allow the flow of each commodity to be measured in distinct

units, joint arc capacities in common units, and to

22



incorporate node capacity constraints. Swoveland (1973)

presented a generalization of the MCTP which involved a

decomposition in which a single subproblem is solved in two

stages.

Considered an effective technique in early iterations,

dual decomposition has a reputation for poor convergence,

with progress toward optimality tailing off in later

iterations. Ho (1984a) speculated that this failure to

converge is due to numerical error in computer

implementation. Ho and Loute (1983) compared solution times

of several problems for a commercial linear programming

package and decomposition codes. They concluded that

standard LP is more efficient when it is practical, but

pointed out that decomposition is nearly as efficient for

the large problems tested. Ho (1984b) further speculates

that efficiency of the decomposition increases with problem

dimension.

Simplicial decomposition, an indirect price-directive

method applicable to non-linear quasi-convex programs was

introduced by von Hohenbalken (1977). Convergence of a

restricted version of simplicial decomposition was recently

demonstrated by Hearn et al., (1984).

We now turn to resource-direction, which solves the MCTP

using the subproblem

23



RS(y) V(y) = min cx

st Nx = b2

0 < x < y

and the master problem

RD min V(y)

st Ay =b 1

yp b, for all p EP

y 0.

Because the master problem provides allocations feasible in

MCTP, RS(y) produces an upper bound on MCTP. When RS(y) has

a feasible solution, it is feasible in MCTP. It is a simple

matter for the modeller to introduce explicit artificial and

slack arcs with penalty costs to insure that any allocation

will produce a feasible solution to MCTP.

Resource-directive algorithms proceed by iteratively

solving the restriction, and then updating the allocations

in some favorable manner and resolving. Geoffrion (1970)

provides a good overview of the resource-directive approach.

The predominant method for computing new allocations is via

subgradient directions, which are a generalization of the

gradient for convex or concave functions with

nondifferentiable points. This method is applicable since

V(y) is a piece-wise linear, convex function.
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The subgradient approach appeared first for solving sets

of linear inequalities (Agmon, 1954; Motzkin and Schoenberg,

1954), and then appeared in the Russian literature adapted

to optimization problems, e.g., Polyak (1967). The

optimization version was first applied in the Western

literature to the travelling salesman problem by Held and

Karp (1970,1971), and further developed as a general method

for optimization by Held, Wolfe and Crowder (1974). The

convergence rate and stepsize considerations were studied by

Goffin (1977) and Bazaraa and Sherali (1981). Fisher (1985)

summarized the subgradient approach to solving the

Lagrangean dual.

Resource-directive algorithms for the MCTP using

subgradients in the direction-finding process for optimizing

RD were developed by Kennington and Shalaby (1977),

Rosenthal (1983), and Allen (1985). Ali, Helgason,

Kennington, and Lall (1980) declare tUeir resource-directive

algorithm to be faster than either a price-directive or a

special basis factorization code in their computational

tests.

While subgradient resource-directive methods are

considered exact (Kennington and Helgason, 1980), zigzagging

in subgradient methods is known to be a problem (Sandi,

1979), so convergence to optimality is frequently slow at

best. Thus, the reported computational advantage of

resource direction using subgradient updates is based on its
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purported ability to reach an acceptable near-optimal point

before simplex-based methods reach optimality (Ali et al.,

1978, 1980; Kennington and Shalaby, 1977).

The final major category of algorithms for the MCTP is

basis factorization or compact inverse methods. Algorithms

in this category employ a primal or dual simplex approach,

but exploit the special structure of the LP basis for the

MCTP to reduce the size of the basis inverse that must be

carried explicitly. A dual partitioning method was

presented by Grigoriadis and White (1972). Graves and

McBride (1976) discussed the primal approach in the general

context of mathematical programming. Hartman and Lasdon

(1972) presented a theoretical primal approach based on the

Generalized Upper Bounding (GUB) technique of Dantzig and

Van Slyke (1967). Incorporating graph theory, they factored

the MCTP basis into a network basis for each product and a

"working basis" with dimension equal to the number of

currently binding joint capacity constraints. Several

efficiencies result. Primal network simplex techniques

apply to computation on pure network bases. Only

computations involving the working basis require real

arithmetic, and this basis is generally quite small.

Kennington (1977) implemented the method and further

study has been done by Helgason and Kennington (1977). Ali,

Barnett et al., (1984) concluded that the GUB approach is

three to five times faster than standard LP codes, but other
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studies generally rate resource-directive algorithms

superior to the GUB approach (see, for instance, Ali, et

al., 1980, and Kennington and Shalaby, 1977).
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II. A RESOURCE-DIRECTIVE APPROACH TO THE MCTP

This chapter presents a resource-directive method for

solving the MCTP which incorporates a simplified projection

mechanism in the primal subgradient capacity reallocations

and conjugate subgradient directions with approximate line

search in a Lagrangean lower-bounding routine. The

procedure is based on the method of Allen (1985) which

solves two essentially independent sequences of problems,

the resource-directive sequence to generate feasible

solutions and upper bounds, and a Lagrangean sequence to

generate lower bounds. The purposes for these enhancements

to Allen's procedure are to provide a computationally-

supportable, theoretically sound projection in the

reallocation routine, to provide a better mechanism for

termination of the procedure, and to attempt to generate

ascent directions in the Lagrangean routine to make line

search worthwhile. We first restate the general form of the

problem to be solved, and then introduce the concept and

required theory of subgradient optimization. At that point

we will be able to state clearly the shortcomings of

previous approaches and present the procedure based on our

improvements.

The resource directive approach attempts to solve the

problem
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min min cx (2.1)

y x

st Ax = b I  (2.2)

NX = b 2  (2.3)

0 < yp < bl, for all p E P (2.4)

x-y S< 0 (2.5)

x >0 . (2.6)

By selecting a particular y e Y, i.e., a set of capacity

allocations satisfying (2.2) and (2.4), the remaining

subproblem is

V(y) = min cx (duals)

st Nx = b2  (u2 )

x < y (u 3 )

x > 0

which is a set of restricted, single-product transshipment

problems. The original problem is then (min V(y) st y E Y},

so the outer minimization forms a master problem which seeks

improving capacity allocations.

Before turning to the subgradient approach to solving

this problem, we briefly mention another approach to this

problem, "Benders decomposition." First, we make the

simplifying assumption that all problems have finite

feasible solutions and recall the theorem of duality to

establish that the optimal values of a linear program and

its dual are equal. Now the dual of our subproblem is
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V(y) = max u2 b2 - u3y (2.7)

st u2N - u31 c

u2 free, u3  0

and letting the constraint set be represented by its extreme

points, (U2e), (U3e), where e e E, the index set of extreme

points, it may be rewritten

max u2eb2 - U3eY .
e

Substituting for V(y) in the master problem yields

(min max(u2eb2 - U3ey) St y E Y}
e

or, equivalently,

min z

st z ? U2eb2 - U3eY e E E

Ay = b1

0 y <b

This is the Benders master problem. In practice, the

extreme points of the subproblem are not all known, so we

generate them by iteratively solving the subproblems to

produce a new extreme point, and then add it to the master

problem in the form of a constraint. The master, in turn,

is solved to produce a new allocation. This is the process

of the Benders (1962) decomposition algorithm which treats y

as a complicating variable. A full presentation of this
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method, which also considers conditions of unboundedness,

may be found in Lasdon (1970). The approach is not pursued

here because of the large size of the Benders master

problem.

The subgradient approach attempts to solve the master

problem by simple updates of the capacity allocations at

each iteration, yk+l = Pr[yk + skdk], where Pr indicates a

projection such that yk+1 E Y, dk is a subgradient and sk is

from a scalar step sequence, (sk ) satisfying

sk = -, sk > 0 , and sk - o as k - - .  (2.8)

Polyak (1967) demonstrated that these projected updates

converge in the limit to an optimal solution simply by

assuring that (2.8) is met. Letting yk+l = yk + skdk, the

projection finds a feasible yk+l = argmin{jly-k+l;2 st

y E Y}.

The subgradient itself is a generalization of the

gradient for a function with nondifferentiable points. If f

is a convex function with nondifferentiable points defined

on a feasible region F, then d is a subgradient of f at

ziE F if

f(z) a f(z) + d'(z-z) for all z E F

The set of subgradients at a point is called the

subdifferential, defined by

f(z) = (dlf(z) f(z) + d'(z-z) for all z F)
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when z is a differentiable point of f, Df(z) = -f(z).

Furthermore, there exists a set of subgradients which are

the limits of the one-sided directional derivatives at z.

These particular subgradients, referred to as "primitive

subgradients," may be used in convex combinations to

generate any member of the subdifferential. This

presentation is made in greater detail by Rockafellar (1970)

and Sandi (1979).

Demjanov (1968) demonstrated that at any nondifferenti-

able point of a convex function f, there exists a

directional derivative -dm = f'(z) E af(z) which is the

locally best direction of descent. That direction is the

minimum norm of the subdifferential; that is,

dm = argmin (ulgH12 st g E 3f(z)}

which is the point of the subdifferential closest to the

origin. Furthermore, a point z* is an unconstrained optimum

if and only if -dm = f'(z*) = 0.

Although using the minimum norm may be attractive as a

descent direction, the required primitive subgradients are

usually not all known; the usual approach is to find a

single subgradient at each iteration and update the

allocations using it along with a step sequence satisfying

(2.8). The method works because any element of the current

subdifferential forms an acute angle with the true direction

to the optimal point, so by taking a step of the appropriate
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length, we move pointwise closer to the optimal solution at

eazh iteration. However, it is not necessary for the

objective functio. value to improve at each iteration. The

sequence achieves an optimal point when a zero-subgradient

is encountered (Held, Wolfe, Crowder, (1974)).

The method is attractive due to its extreme simplicity

and is commonly used as a mechanism for multiplier

adjustment in Lagrangean relaxations (e.g., Fisher, 1985)

and for capacity reallocation in resource-directive

algorithms for the MCTP (see Kennington and Shalaby (1977),

Rosenthal (1983), or Allen (1985)).

The choice of stepsize sequence is critical to the

success of subgradient methods. For instance, the harmonic

series, sk = 1/k, satisfies (2.8) but exhibits poor

convergence in practice (Bazaraa and Sherali, 1981).

Convergence has also been demonstrated for

sk = n(v*-f(zk))/Ilgk,12

where 0 < n < 2 is a scalar multiplier, v* is the optimal

objective function value, and gk is the norm of the

current subgradient (Polyak (1967)). Since v* is generally

not known, several researchers (for example, Kennington and

Shalaby (1977) and Bazaraa and Sherali (1981) have replaced

it by approximating values such as upper bounds or

combinations of bounds. Goffin (1977) discusses a geometric

stepsize progression which exhibits quadratic convergence,

33



but may not achieve an optimal point. Some good experiences

have been reported for these methods, but these "heuristic"

stepsizes frequently produce poor convergence, or, worse,

may converge to non-optimal solutions. It is common

practice to include in the process a heuristic rule for

modifying the value of n when progress is slow.

We now present the specific application of the

subgradient approach to the MCTP, first to the resource

direction routine in Section A, then to the Lagrangean

routine in Section B, and finally present the overall

procedure in Section C.
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A. GENERATING UPPER BOUNDS VIA RESOURCE DIRECTION

We use the subgradient approach in resource direction to

perform the update, yk+l = Pr~yk + skdk] for yk,yk+l E Y, to

solve the problem min V(y) st y E Y where
y

V(y) = min cx

st Nx = b2

x~y

x>0.

Notice that changes in capacity allocations act as

parametric changes to the right-hand side of the subproblem,

so V(y) is convex with respect to changes in y: a proof of

this is given in Kennington and Helgason (1980).

To identify an appropriate subgradient, we first recall

(2.7). For any allocation y producing a feasible solution,

we have V(y) = u2 b2 - u3 Y, where u2 and U3 solve the dual

program. The following proof from Kennington and Helgason

(1980) shows that -U3 is a subgradient of the function V at

Y:

Lemma 2.1: Let y a 0 be any feasible allocation to V(y)

and (u2 ,u3) be the associated optimal dual

solution. Then -u3 is a subgradient of V at

y.

Proof: Let y, y c Y be any feasible allocations, with

optimal dual solutions (u2,u 3), (u2 ,u3) in V(y),
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V(y), respectively. Then

V(Y) - V(Y) = u2b2 - u 3 Y - (u2b2 - u3y)

u2b2 - u 3y- (u2b2 -u3Y) = -u3 (y-y), or

V(Y) V(y) - u3 (Y-Y) so -u 3 is a subgradient of V

at y. QED.

Therefore, a subgradient is directly available from the

subproblem at each iteration as the negative of the optimal

dual u3 , for allocation y.

If -u3 were a feasible direction, the subgradient

reallocation would be yk+l = y k-.sku 3k. However, since -u3

generally yields infeasible allocations, we project the

infeasible reallocation y = yk-sku3k to a feasible

allocation, yk+l by solving the quadratic program

min )(yk+l_.) i 2

st yk+l y

An equivalent form of this problem is

mn . (ypjk+l-ypj)2 st yk+ E y

which decomposes on j. Solving a quadratic program for each

jointly constrained arc at each iteration is a burdensome

task, so a heuristic projection is generally used which does

not involve the quadratic functions.
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Unfortunately, computational results of Allen (1985),

for instance, indicate that the method is unable to obtain

near-optimal solutions on even moderate-sized problems, even

when the bulk of the solution time is spent on the primal

reallocations.

Two factors seem to contribute to this failure. First,

the nature of the subgradient itself is that no primitive

element of the subdifferential is guaranteed to be an

improving direction. Second, the space of the primal

variables is relatively large, complicating the problem.
* X*

That is, if JT = {JI Xpj = blj x optimal in MCTP}, then
P

in applying the subgradient approach to the Lagrangean

problem, we work with O(IJTI) dual variables at each

iteration; in the primal resource allocation, we make

O(IJTI'IPI) reallocations. Thus, as the number of products

grows, the master problem becomes substantially harder.

We implement a projection method which ignores

0 < yp < b, and maintains the bounds externally by, in

essence, a simple minimum ratio test. The resulting

projection can be solved analytically, and applied in

practice through a simple set of calculations. Therefore,

although it does not relieve the previously mentioned

shortcomings of the subgradient method, it does not add to

them. Furthermore, it preserves theoretical convergence of

the method for a stepsize sequence satisfying (2.8).
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If we let yk and u3k be the allocation and dual

variables obtained at iteration k, the infeasible

reallocation y and the feasible (projected) allocation

yk+l, then we may express the last two allocations as

y yk _sku3k

and

yk+l yk s u3k

The resulting quadratic program is

min iyk+l-y11 2

st Ayk+l = b,

Recognizing that yk+ly = _sku3k + sku3k, that Ayk bl, and

that sk is merely the scale factor, an equivalent problem is

min Hu 3k-u3ki 2

st Au3 k = 0

For a single constraint j, dropping the iteration count,

the resulting problem is

min u3ju 3 j - u3j'u 3 j

st l'u3 j = 0 .

The Kuhn-Tucker conditions for this problem are

u3j - u3j - 1'w = 0 (2.9)
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where w is the dual variable associated with the constraint.

Premultiplying by .', recognizing that l'u3 j = 0 and solving

we find w = -(l'1)-ll'u3j. Substituting into (2.7) and

rearranging, the familiar projection

U3j = (I - l(l'l 1)-l')u3j

is obtained. Observing that (1'i)- l = 1/IPI and rewriting

to summation form, we see that the projected subgradient for

the p-th product on arc j is

U3pj = [(IPt-l)u3pj/IP1] - U3p'j/IPI = u3pj-u 3 jp

where

u3j = U3pj/IPI
p

The associated reallocation update is ypk+l = ypk_

sk(u 3p-u3), where sk is from an appropriate stepsize

sequence, (sk

Since the bounding constraints were ignored, ypj < 0 or

ypj > uj may result. In this situation we perform a minimum

ratio test, setting 0 < sj' I sjk such that 0 < ypj bij

for all p on arc j. We drop all products with Xpj = 0 and

u3pj < u3j on arc j, recomputing u3 j and reallocating among

the remaining products to simplify the process

computationally. In addition, if some Xpij = bj with U3ptj

- min(u3pj), no reallocation is performed for that arc.
p
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Finally, if U3pj = u3j for all p on some arc j, then no

reallocation occurs on that arc.

We write the procedure as follows, given xk, u3k from

the current subproblem, and a stepsize sk:

REALLOT: Compute u3 jk = (Aju3 )/IPI

(For each arc, j:

Cond 1: If there is a p' with xp,j =blj

and u3p'j = min(u 3pj),
p

let ypjk+l = ypjk

Cond 2: If u3pj = U3j for all p,

let ypjk+1 ypjk

Cond 3: Identify PN (PiXpj = O,u3pj > u3j)

If PN , recompute

U3j = U3pj/(IPI-IPNI)
PfPN

Over all p X PN

set ypjk+1 = ypjk - sjk(u3 pj_i 3j)

such that 0 < sjk < sk and

0 < ypjk+l < bij for all p c P

End for)

Subgradient reallocation need only be performed for the

set of joint arcs which are currently tight. For all other

arcs, if there is some Xpj= ypj with favorable reduced

costs, but Ajx < blj for that j, we perform a simple

reallocation in the manner of Rosenthal (1983), taking slack
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from any p' with Xpoj < ypej until it is all used. Thus, in

the solution process, all available slack on a joint arc j

is offered to each product until it is consumed, at which

point that arc becomes a candidate for subgradient

reallocation.

In practice, we first perform simple reallocations until

no further improved solutions are found, and then

incorporate subgradient reallocations into the ensuing

iterations for tight joint constraints. The set of tight

constraints is updated with each pass through the

subproblems. We note that if at any iteration k, there is

no arc j to which a simple reallocation may be applied and

all arcs with Ajx = blj also have u3pj = u3j for all p, we

have achieved an optimal point (Rosenthal, 1983).

Unfortunately, the optimality condition is not

frequently achieved, nor is a useful lower bound available

from the dual information of the restricted problems, so we

establish lower bounds on MCTP through a Lagrangean

relaxation routine in hopes of terminating through bound

convergence. The Lagrangean approach is explained in the

following section.
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B. LAGRANGEAN RELAXATION USING CONJUGATE SUBGRADIENT

DIRECTIONS

Lagrangean relaxation is a frequently-used device to

assist in solving linear programs in which a set of

complicating constraints are placed into the objective

function with penalty multipliers which are estimates of the

optimal dual multipliers to the original problem. Recalling

Chapter I, the problem becomes

LR max min cx - ul(Ax-bl) st x cF,
u1 0 x>O

which is frequently solved by fixing uj 0 and solving

LR(u1 ) Y(ul) = min(c-ulA)x + u1b1

st x 5 F

to yield a lower bound on the original problem. A new uI is

then found and LR(ul) resolved, repeating until optimality

is achieved.

A common method of accomplishing the uI updates is by

subgradient optimization, where g = (Ax-bl) is a subgradient

and

u1k+l = min(O,ulk-skgk)

is the update. The "min" operator solves the projection

minj ,ulk+1-u1 1 12 st u1k+l < 0 (see for instance, Fisher,

1985). However, the method has several drawbacks. First,

due to the nature of the subgradient, the bound is not
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always improved, and due to the sensitivity of the process

to choice of sk, convergence may be slow, or the process may

converge to a non-optimal point. Due to the relaxation, it

is not necessary that a primal feasible solution ever be

generated and, since we only determine one primitive

subgradient at each iteration, we are unlikely to find a 0-

subgradient and thus recognize an optimal solution.

In this section we introduce a procedure which seeks to

overcome some of these difficulties by retaining information

on previous subgradient directions in order to approximate

the subdifferential at the current point. The concept,

developed originally by Wolfe (1975) involves computing a

"conjugate subgradient" direction at each iteration which is

the nearest point to the origin of a set of m retained

subgradients. The method relies on the property that the

subdifferential of any point can be arbitrarily well

approximated by the convex hull of gradients of the points

in its immediate neighborhood (see Rockafellar, 1970, for

details). The algorithm generates a sequence of points

(U-k) and subgradients {gk1 and computes a search direction

dk as the solution to

(CD) min 11dJ1 2

m

st I wngk- n = d
n=0

I wn=1

n=0

w > 0 for n = l,m
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for some integer m. At some step of the algorithm, some

subsequence of points, {ulk,ulk-l,...,ulk-m ) is close enough

together that

af(zk) conv(gk,gk-l,...,gk -m )

and

dk - 0.

When this occurs, we are sufficiently close to the optimal

solution to terminate with ulk as an approximation for ul*.

Wolfe's algorithm calls for a single variable search to

optimize the objective in the conjugate subgradient

direction; this is computationally expensive since the inner

minimization involves solving the set of network subproblems

for various step lengths. So, we find sk approximately.

Define a nominal stepsize sn as

sn = n(V-Y)/I gkjI

where Igkj is the Euclidean norm of the current

subgradient, and n is a scalar multiplier. V is the current

upper bound, and V is the current lower bound. Then we

evaluate W(n) = Y(ulk + sndk) for n = 0,1, and 2. Since the

objective function value of the dual of a linear program is

piecewise-linear and concave as a function of the multiplier

values (Bazarra and Shetty (1979)) this surface can be

approximated by fitting a quadratic interpolating function
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through these three observations. Using the Newton-Gregory

forward equation to interpolate on equally spaced data, we

calculate

W(n) = W(O) + nW1 + .5n(n-l)W2 (2.10)

for 0 < n < 2, where

Wl = W(1) - W(O)

and

W2 = W(2) - 2W(1) - W(0)

Details may be found in Gerald and Wheatley (1984), for

example. To compute the appropriate step length, we select

nk = argmax (W(n)10 < n < 2)

and set sk = nk(v-)/jlgkjl. The resulting multiplier

update is u1k+l = max(O,ulk+skdk), and we solve for y(Ulk+l)

to complete the approximate line search.

Solving LR(ulk+l) provides a new subgradient gk+l -

(Axk+l-bl)+ which is added to the retained set. We are then

ready to compute a new conjugate direction using (CD).

Since we are approximating the subdifferential, dk will

not always be an ascent direction. In that case, we simply

take a small step in the direction dk, generate gk+l to

improve our local approximation of the subdifferential,

compute a new dk+l, and continue.

45



When dk is near zero, we must insure that the sequence

of ul's generated is suitably close together to adequately

approximate the subdifferential at ulk. Wolfe suggests this
m

amounts to the check I I Ulk-n - ulk-n+l < M for some
n-i

M > 0. If this condition holds, ulk is accepted as near

optimal; if not, all retained subgradients are dropped and

the process is restarted from Ulk.

It is possible to produce feasible capacity allocations

from Lagrangean solutions, which may be used as starting

points for resource-directive procedures. These allocations

must be integer to preserve integer arithmetic in the

network subproblems. Given a current value for x, the

capacity allocation y may be computed by

(CA) Pr[xpj(blj/ xpj) if i Jv (2.11)
p

ypj

(Pr[xpj + (I xpj-blj)/IPI] if j i

where Pr[] indicates a projection onto the set of integers

satisfying I ypj = uj and ypj 0, integer for all p and
pj J. In practice, simple rounding is sufficient.

Note that the conjugate subgradient approach is also

applicable to the resource-direction problem, but we chose

not to use the conjugate approach due to excessive storage

requirements. While for the Lagrangean we must store m

subgradient vectors, in the resource-directive problem we

must store m'IP vectors.
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C. A RESOURCE DIRECTIVE PROCEDURE WITH LAGRANGEAN

LOWER BOUNDING

We now present a procedure combining the resource

direction of Section A with the Lagrangean routine presented

in Section B for solving the MCTP. Upper bounds and

feasible solutions are obtained via the resource direction,

while lower bounds are obtained from the Lagrangean routine.

Although we present a specific stepwise arrangement, the

resource directive and Lagrangean routines are coupled only

by the values of the bounds. They may be performed

sequentially, iteratively, or in parallel, exchanging bound

information when appropriate.

Define the stopping criterion e > 0 as the allowable

relative error between bounds, D > 0 as the acceptance

criterion for a near-zero direction, and U > 0 as the

allowable Euclidean separation of points used to approximate

the current subdifferential. Let V and V be the current

bounds and x be the incumbent solution. Also let K be the

maximum allowable number of iterations.

The Algorithm RDLB follows:

Input: The network T - (I,J), and joint capacity vector

bl, and for each product p = l,...,IPI, a cost

vector cp, and a supply/demand vector b2p

Output: Incumbent solution x, and incumbent value cx.

step 0 (Initialize): Select e > 0, D > 0, U > 0, m 1,

K > 1 integer, set k = 0, uo  0, Jv = '
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Solve LR(O), compute iv = {iIAjX 0-blj > 0),

Evaluate Y(0) obtaining x0

if v ;6 0, stop with x0 optimal in MCTP

Else, Y =Y(O)

set do 90 = (Ax0-bl)+

Set y0  CA(xO)

Solve RS(yO) with Xy* optimal, set V = (OJ

x x*

if (V -) < e, exit.

step 1: Solve Lagrangean

la (Line Search): Compute s = n(v-y)/Ilgkll, solve

W(n) for n = 1,2

Set rik = argmax{ W(n), 0 < n <S 2)

sk= nk(v.v)/I jgkjl

lb (Move to new point) :

Set ujk+l = max(O,ulk + skdk)

Solve LR(ulk+l)

If Y(u 1k~l) > V, y1 = yukl

if (V-31)/V < e, exit with incumbent x

Else, compute subgradient gk+l where

gjk $ Ajxk-blj for j E Jv

0 otherwise

set Jv =v U (jIAjx-bl > 0)

set Gk+l = (g )C+l .6.9k-m+l}
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lc (Compute New Direction):

Let dk+l = argmin(IlId11 2 st d E conv(Gk+l))

> D, set k = k+l, go to step 1.

< D and I lu1k-n-ulk-n+li : < u,
n=O
k = 1, go to step 2

If Ijdk+l I

< D and I iu1k-nl 1k-n+jl > u,
n=O

set d° = gk+l,

U10 = U1 k, k = 0, GO =e,

go to step 1.

step 2 (Resource Direction):

2a. Solve RS(y) for the current yk

If V(y) < V, V = V(y), x = Xy*

If (V-V)/V < e, exit with x

Else let JT = (jIAjxjk-blj =0)

2b. (Reallocate)

For all j e JT, perform the procedure REALLOT

to obtain ypjk+l = ypj k sjk(u3pjk_ 3 jk)

If ypjk+l = ypjk for all j e JT, exit

If k > K, exit

Else, go to step 21.

Two aspects of this algorithm represent additional

computational burdens over a standard subgradient approach

which must be justified. First, the direction-finding step

requires solving a quadratic program. This is a small
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program of m variables which may be solved efficiently as a

linear complementarity problem using the Kuhn-Tucker

conditions (Bazaraa and Shetty, 1979). Since the purpose of

computing conjugate directions is to reduce the zigzagging

common to subgradient algorithms, the potential for fewer

iterations justifies the effort.

Second, the line search requires two additional

subproblem evaluations at each iteration. This means, in

effect, that 3 normal subgradient steps can be taken for

each conjugate step taken. It is not clear that this effort

will always be justified. An alternate form of the

conjugate subgradient algorithm which overcomes this problem

first takes a series of subgradient steps, retaining the

subgradients, and then periodically performs a conjugate

subgradient step with quadratic approximation. This

amortizes the cost of the search over several iterations.

After each conjugate step, old subgradients are dropped and

a new collection begins. Computational results presented in

Chapter IV show that the conjugate directions method does

generate a direction resulting in a large increase to the

lower bound every few iterations, but is rather slow.

However, because the entire procedure performs much worse

than other algorithms tested, the alternate forms suggested

above have not been tested.
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III. PRICE DIRECTIVE DECOMPOSITION ALGORITHMS

In this chapter we develop the theory of dual

decomposition and introduce a new decomposition algorithm

which solves a penalized version of the original linear

problem. This is a procedure which uses restricted

simplicial decomposition to construct a nonlinear master

problem and conveys price information to the subproblems

through the gradient of the objective function. With proper

choice of penalty parameters, the subproblems quickly

produce good Lagrangean lower bounds on the original

problem, and improving primal solutions are produced by

resource direction using the (infeasible) penalized master

problem solutions.

Both algorithms are applicable to general linear

programs and their development here is accordingly general.
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A. THE DUAL DECOMPOSITION ALGORITHM

The standard approach in describing the dual

decomposition algorithm is to put forth the idea of

representing the feasible region of a subset of the

constraints of an LP as a convex combination of its extreme

points. This reduces the number of constraints, but

introduces a large number of variables (the extreme points

of the dualized constraints), so the problem becomes one of

finding the extreme points which, in convex combination,

describe the optimal solution to the original problem.

Dantzig-Wolfe decomposition combines this extreme point

representation with column generation, which is the process

of generating extreme points as reoaired.

If we let X be a matrix whose columns are the extreme

points of F, then any x in F may be expressed as

x = Xw, lw = 1, w > 0

where l-w = 1, w > 0 enforce convex combinations of the

extreme points.

Substituting this form yields the Dantzig-Wolfe master

problem, at the kth iteration

min cxkwk (duals) (3.1)

st (Axk)wk < b I  u I  (3.2)

l'w k = 1 u O  (3.3)

wk > 0 (3.4)
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where Xk is a matrix of extreme points collected so far, and

(3.3) and (3.4) are the convexity constraints.

Each time the master problem is solved, we check to see

if it is an optimal solution by computing the reduced costs

for the non-basic extreme points of F. It is not necessary

to check them all since the most negative reduced cost is

found by solving the problem

min (c-ulA)x - uO  (3.5)

st x E F

which produces an extreme point of F. This is the Dantzig-

Wolfe subproblem, which for MCTP is a set of single-product

network problems which are easy to solve.

If xk solves the subproblem at the kth iteration and

(c-ulA)xk-uo < 0, then the reduced cost associated with xk

is favorable, so xk is added to the collection of extreme

points and we return to the master problem. If (c-ulA)xk -

u> > 0, then the reduced cost for xk is unfavorable. Since,

due to the minimization, it has the minimum reduced cost,

then all non-basic extreme points of F have unfavorable

reduced costs, and the process terminates with the solution

to the previous master problem optimal in MCTP.

A second approach may be taken to the dual decomposition

algorithm which considers the decomposition as a cutting

plane process (Kelley, 1960), resulting in a master problem
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which is dual to the standard master problem (e.g., Graves

and Van Roy, 1979).

The problem to be solved is

(P) min cx (dual variables)

st Ax < bI  (Ul)

Nx = b2  (u2 )

x > 0

whose dual is

(D) max ub = u 1 b I + u2b2

UlA + u2N < c

u1 < 0, u2 free

The feasible regions associated with the various constraints

are

Fpl = (xIAx < bl}

Fp2 = {xjNx = b2 )

Fp = FpI and Fp2 and (xix > 0)

FDl = (UjulA + u2 N 
< C)

FD = FDI and (ulul < 0).

The respective values of the primal and dual problems are

written V(P) = cx and V(D) = ub.

Let f(u,x) = cx - ul(Ax-bl), which we recognize as the

Lagrangean of (P) with respect to the constraint set A.

Lemma 3.1: If x E Fp 2 , x > 0, u E FD, u 2 < 0, then

f(u,x) > ub.
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Proof: Write the identity:

ub = cx - ul(Ax-b1 ) - u2 (Nx-b2 ) - (c-uA-u2N)x.

Rearrange and substitute:

ub = f(ul,x) - u2 (Nx-b2 ) - (c-u1A-u 2 N)x.

But the two right-most terms are < 0, giving the

desired result. QED.

This suggests that by fixing ul, the following

subproblem results:

(SUB(Ul)) min f(ul,x) = u1 bI + (c-ulA)x

st Nx = b2  (U 2 )

x 0

This is the Lagrangean relaxation of (P) with respect to

A, with uI fixed. If (SUB(ul)) is infeasible, so is (P);

otherwise we generate uI using a master problem in a

convergent algorithm.

Let uk = (ulk,u2k) be a composite dual solution at step

k of the algorithm. The following lemmas describe its

properties:

Lemma 3.2: Let xk and u2k be respective optimal primal

and dual solutions of (SUB(Ul)). Then ukb =

f(ulk,xk) = V(SUB(ul)), and uk E FD.
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Proof: Again, use the identity

ub = cx-u1 (Ax-b1 ) -u2 (Nx-b2) -(c-uA-u2N)x.

So ukb = f~l'k u (x-2)-cuk-2k~k

since u2 k,xk are optimal in (SUB(ul)), by

complementary slackness

u2 k(Nxk-b2) = (cculkA-u2 kN)xk = o.

(StJB(ulk) optimal implies

(c-U2 kN) -ulkA 2> 0, and ulk < 0, yielding uk E FD.

QED

According to Lemma 3.2, for any 111k <, 0, a feasible

solution uk = (ulk,u2 k) E FD can be constructed with value

V(SUB(ul)). Let Ui be the best solution to (D) currently

known. The following lemma establishes the necessary

conditions for improving the incumbent solution, Ui.

Lemma 3. 3: Let K = (k Ixk E FP2 xk > 0). A necessary

condition for V(SUB(ukl) to yield a dual

solution value better than the incumbent value

u~b is that f (u,xk) 2 ub+e, k E K, for some

e > 0.

Proof: xk E Fp2 is feasible in (SUB(ul)) for any ul, so

V(SUB(Ul)) S f(u,xk). For V(SUB(ul)) > ub, ul must

satisfy f(ul1 xk) 2: Zb+e for k cK and e > 0. QED

The existence of a convergent algorithm for finding ul*

is established as follows.
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Lemma 3.4: The sequence (SUB(ul)) with arguments (ulk} is

finite if {x E Fp 2 ,X > 0) is bounded, V(D) is

finite, and at any step k, ulk satisfies

f(ulk,x) > ub+e for 1 = 1,..., (k-l) for some

e > 0.

Proof: SUB(ulk) yields basic solutions, xk, which are

finite in number. The lemma follows if any

repeated basic solution yields termination of the

sequence. By lemma 2, ukb = f(ulk,xk) and uk E FD.

If xk = x1 for some 1 < k, then ukb = f(ulk,xk) =

f(ulk,xl) Z ub+e since ulk satisfies f(ulk,x ) >

ub+e for 1 = 1 ... (k-l). Thus ulk is a new

incumbent, and with e > 0 and V(D) finite, there

may only be a finite number of such updates. QED

This criterion leads naturally to the master problem:

f(ul 1 x I  cx I -ul(Axl-bl) >ub+e, 1 =

Ul<0

Notice that the objective function is unspecified: any

objective will suffice. Experience shows that the most

recent cut works well in practice. That is,

(MP(x)) max f(ul,xk)

st f(ul,xl) E cx1 -ul(Axl -bl) > ub+e,

1 7,...,(k-l), u 0
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MP(x) may be unbounded, in which case any ul :S 0 such

that f(u,x1 ) 2: ub+e, 1 = 1,...,(k-1) will suffice. When

V(MP(x)) < ub+e, the process terminates with an a-optimal

solution.

According to the following lemma, a feasible primal

solution to (P) can be recovered whenever V(MP(x)) is

finite.

Lemma 3. 5: Let w, 0, 1 = 1, .. .,(k-1) be the optimal

dual solution to MP(x) at iteration k. if

V(HP(x)) is finite, a primal feasible solution

to (P) is

k-1 k-i
xk = [xk + wix 1 /[1 + wi

Proof: MP(x) is restated in canonical form as

max -ul(Axk-bl) + cxk

-ul(bl-Axl) S cxl -[ub+eJ, 1 = 1,...,(k-1) (w1)

By duality, the optimal dual solution, w, satisfies

k-i
-(b1-Axl)wl bl-Axk, yielding

k-i k-i
A~xk + wI1 1  1 1 + W]~b

Therefore, xk E Fp 1 . Also xk is a convex

combination of x'L E Fp2, so xk 6 F P* QED
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Lemma 3.6: If V(MP(x)) S ub+e, then x and u are e-optimal

primal and dual solutions to (P).

Proof: V(MP(x)) = f(ulk+l,xk) = cxk-ulk+l(Axk-bl) (primal)

= cxk + [ [cxl-(ub+e)]wl (dual)

= [cxk+(ub+e)][l + 7 wl]+(ub+e)]

Rearranging yields

cxk-(ub+e) = [f(ulk+l,xk)-(ub+ e)]/[l + wl] and

cxk < f(ulk+l,xk) = V(MP(x)). If V(MP(x)) < iib+e,

then cxk < ub+e. If u* is the optimal solution of

(D), since xk E fp, and

ub < u*b, u*b < cxk < ub+e < u*b+e. QED

Finally, we show that once the master problem becomes

bounded, it remains that way.

Lemma 3.7: The value V(MP(x)) remains bounded once

F(MP(x)) becomes bounded.

Proof: V(MP(x)) is finite if F(MP(x)) is bounded. Once

F(MP(x)) becomes bounded, subsequent iterations add

constraints and make existing constraints tighter

by updating ub, further restricting the problem.

QED

The dual decomposition algorithm, DDC, based on the

preceding theory follows.
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Algorithm DDC:

step 0: Specify u I' < 0, e > 0, k = 1, ub = -

step 1: Solve (SUB(ulk)) for xk, u2k (i.e., f(ulk,xk)

ub+e,xk E FP2 ,xk > 0)

If infeasible, stop with (P) infeasible

If ukb = (ulk,u2k)b > _ub, update incumbent

solution.

step 2: Solve (MP(x)) for ujk+l

< ub+e, declare xk, u e-optimal for (P), stop

Z ub+e and finite, xk E Fp2, k = k+1, go to

step 1

If V(MP(x)) . =, use any ulk+l < 0, f(ulk+l,xk) Z ub+e,

k = k+l, go to step 1

is infeasible, STOP

Since the master problem yields feasible primal

solutions, it provides upper bounds,

V(MP(x)) 2: cxk > u*b

Retaining all cuts may become too expensive in time or

space in solving MP(x). It is possible to conduct the

algorithm as a heuristic by retaining only a fixed number of

cuts. This may degrade the quality of the solution

obtainable at any iteration but does not prohibit

convergence. A discussion of cut-dropping strategy is

provided in the chapter on computational experience.
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The value of e need not be fixed. A large value may be

used initially which may be reduced as inconsisten-cies are

encountered in MP(x). Parametric analysis may be used to

find a maximum e, or e may be reduced in a fixed algorithmic

sequence of relaxations of cut aspirations.

As a practical matter, the sequence of master problems

behaves much like a first-order descent method in convex

nonlinear programming. Each cut is a tangential

approximation to the objective function as can be seen in

Figure 3.1. Just as in nonlinear programming, we can expect

oscillation as the solution sequence progresses.

, , V(u)

- -- - - - - -- % - ( U ) +

. . . . . ..........

. I & %
i s i

Sj

Figure 3.1 Tangential Approximation to Lagrangean
Dual Function
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In order to deal with such oscillation, a local

neighborhood (or trust region) may be specified for ul.

Initially, this neighborhood is relaxed to encompass values

of uI sure to contain the optimum (i.e., viewing uI as a

penalty per unit of violation of joint capacity constraints,

we wish to assure a feasible completion). Subsequently, the

trust region can be restricted when oscillation is apparent

(e.g., whenever V(MP(x)) is non-monotonic improving).

As an additional stabilizing influence, we introduce

decomposition goals for the master problem variables. These

goals may be violated at a small linear penalty cost.

All the essentials for convergence are preserved as long

as the cuts are satisfied hierarchically before the goals.

In the same vein, the trust region and cut dropping

heuristics do not present a serious impediment in practice.

Brown, Graves, and Honczarenko (1983) developed similar

mechanisms for primal goal decomposition of mixed integer

models.

DDC cuts can be restricted to Dantzig-Wolfe cuts if we

force a maximal solution:

DDC cuts cx1 - ul(Axl-bl) (ub+e), 1 = I,...,Kj

DDW cuts max Uo

st cxI - ul(Axl-bl) uo + u1bl, 1 = 1,...,K
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In this sense the dual of the Dantzig-Wolfe master

problem is equivalent to the DDW master problem. Taking the

dual of (3.1)-(3.4) yields

max u1bI + uo

st u I (AXk) + Uo : (cXk )

Ul1  0 

Rearranging and writing each constraint individually, the

result is uo S cxI - ul(Axl) for 1 = 1,k. Adding u1b I to

each side results in

uo + u1 bI S cx
I - ul(Axl-bl) for 1 = 1,...,k

Before updating DDC to include all the above innovations, we

introduce the following notation:

X is the primal incumbent,

Xk is the matrix of extreme points generated up to
iteration k,

V is the upper bound,

e,ef > 0 are initial and final convergence tolerances,

R,Rf > 0 are initial and final trust regions, and

nholdnf 1, integer are number of cuts held, and
total number of cuts allowed, and

We is exponential moving average of cut weights.

The updated algorithm DDC1 becomes:
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step 0: (initialize)

Specify e > 0, ef > 0, R > 0, Rf > 0, nhold 1

Set ub = -

step 1: (solve aggregated problem)

Solve min c 1xl st NlX1 = ba, 0 < X1 < b1

where ba = b2p
p

to find ul° < 0

Set initial decomposition goals.

step 2: Solve (SUB (ulk)) for xk, u2k

Generate cut

If ukb > ub, update incumbent solution.

step 3: (optimal capacity allocation)

Set yk = CA(xk), solve RS(yk) with xyk optimal

If V (yk) < V, update V, x

Generate cut.

step 4: Solve (MP(x)) for ulk+1

Update decomposition goals

If V(MP(x)) < ub+e, set e = max(e/2,ef)

If e > ef, repeat step 4

If V(MP(x)) not monotonic, set R = max(R/2,Rf)
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step 5: If V(MP(x)) > ub+e and finite, 3xk F

)-, use ulk+l < 0, f(ulk+l,x 2 ) ? ub+e

I is infeasible, STOP

Set cut weights wk+l = .Swk + .2w
k

If solving relaxed master problem, recover primal

solution (i.e., XPk = xkwk )

If CXp k < V, update V, x.

step 6: (termination tests) k - k+l

If n < nf and ub < V-e go to step 2.

Cut generation is performed as follows:

Generate cut

n = n+l

if n > nhold then

locate slack cut with minimum weight and replace

it; if no cut is slack, locate taut cut with

minimum weight and replace it, also relax upper

bound from recoverable primal solutions.

Generate cut of desired class (e.g., Dantzig-Wolfe,

DDC, ... ).
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B. A PENALTY ALGORITHM FOR LINEAR PROGRAMS USING

RESTRICTED SIMPLICIAL DECOMPOSITION

Penalty functions have not been seriously considered as

vehicles for large-scale mathematical programming in the

past because they introduce nonlinearity (Geoffrion, 1970).

However, the recent advent of interior point or logarithmic

barrier function methods has shown that non-linear

approaches to linear programming are at least viable and

offer attractive convergence rates and complexity properties

compared with simplex-based methods (Karmarkar, 1984; Gill

et al. 1986). In this section we develop the theory and

present an algorithm based on penalty function concepts

which is well-suited to large-scale optimization

applications. The method has strong parallels to Dantzig-

Wolfe decomposition, using restricted simplicial

decomposition to produce a nonlinear master problem and

linear subproblems. The process incorporates Lagrangean

lower bounds in a natural way, but produces infeasible

solutions in the master problem. We show how to use

capacity allocation/restrictions on these infeasible

solutions to produce improving upper bounds. The result is

a convergent algorithm which displays a superior convergence

rate in practice. To set the stage, we begin with a

discussion of penalty function theory.

Penalty algorithms approximate constrained optimization

problems by unconstrained (or partially constrained)

problems. This is done by placing the constraints into the
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objective function with a penalty parameter which exacts a

large price for any violation of the constraints. This

relaxed approximation to the original problem becomes more

accurate as the penalty parameter is increased. Thus, the

penalty algorithm generates a sequence of infeasible points

which converges in the limit to an optimal solution of the

original problem.

From the general form found in (1.6), we introduce the

specific penalty form of a linear program,

(PP) min q(h,x) = cx + P(h,x)

st x E F

h

where P(h,x) = jIQ(x)II t, I'It indicates the tth norm,

Q(x) = (Ax-bl) + , (Ax-bl)+ = max(0,Ax-bl), scalar h > 0,

1 < t < 2, and F = {xjNx = b2 ,0 < Xp : bl). This is a

common form found in any nonlinear programming text (see,

for instance, Bazaraa and Shetty, 1979, or Luenberger,

1984). Recalling that Jv is the set of currently violated

constraints, the objective function may also be written as

min q(h,x) = cx + h ! Qj(x) . (3.2)

J EJvJ

Since the penalty terms are convex for h > 0, the

objective function remains convex, and for t y 1, the

objective function is differentiable everywhere. Convexity

is proved for the quadratic penalty function in Appendix
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A: convexity arguments for other forms may be found in

Bertsekas (1982b) and Luenberger (1984), for example.

Due to the convexity of q(h,x), we may employ the

standard mathematical result that x is optimal in q(h,x) if

and only if first-order stationary conditions are met:

Vq(h,x)(x-x) > 0 (3.3)

for all x E F. For Vq(h,x)(x-x) < 0, (x-x) represents an

improving direction.

The following penalty function characteristics, stated

in terms of PP, are taken from Luenberger (1984). Let (hk)

and {xk ) be sequences of penalty parameters and associatei

optimal solutions, with hk+l > hk, and h° > 0. Then

q(hk,xk) q(hk+l,xk+l)

P(xk) P(xk+l)

cxk < cxk+l

and

cx* > q(hk,xk) k cxk

where x* is optimal in MCTP. Thus, solving the penalty

problem for any h = hk > 0 produces a lower bound on MCTP

and

lim q(hkxk) = cx* with xk x*
k -
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This large-scale nonlinear version of the original

linear problem is useless without an effective means of

solution. We base our solution algorithm on the promising

method of restricted simplicial decomposition.

Restricted simplicial decomposition (RSD) was developed

by Hearn et al. (1984) to solve large-scale pseudo-convex

nonlinear optimization problems. The method decomposes the

original problem into a nonlinear master problem and a set

of linear subproblems (assuming linear constraints). At

each iteration, the subproblems generate a new extreme point

of the feasible region for the master problem, and the

master problem minimizes the original objective function

over a simplex of retained extreme points. The master

problem in turn provides new cost information to the

subproblems via ?f(x) where f is the objective function of

the master problem and x is the current solution. The

process terminates when no favorable extreme points remain.

It is termed "restricted" since only a fixed number r of

extreme points are retained at each iteration.

When r - 1, RSD specializes to the algorithm of Frank

and Wolfe, 1956. In this case the master problem becomes a

minimization on the line joining the current point x and the

extreme point just generated. Many researchers have noted

the slow convergence of the Frank-Wolfe algorithm (Ali, et

al., 1978; Meyer, 1974; Wolfe, 1970): a simple example tiken

from Wolfe (1970) makes this evident. Suppose we irs r-,,ni



to find the point of a polytope which is closest to the

origin: in Figure 3.1, this is the midpoint of the base of

the triangle. At each iteration, linearizing the objective

function and solving the resulting LP leads to vertex B or C

of the triangle. Thus, as the algorithm progresses, the

line search proceeds along a direction nearly orthogonal to

the gradient Vf(xk) causing zigzagging. However, simply by

retaining two extreme points and optimizing over the simplex

formed by the extreme points and the current iterate, the

problem in Figure 3.2 is solved optimally on the second

iteration. Indeed, Hearn's computational results show

significant improvement as r is increased from 1 (Hearn, et

al., 1984).

A

1X

B C

Figure 3.2 Frank-Wolfe Zigzagging Example
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Using this method on PP decomposes the problem into a

master problem, which minimizes q(h,x) over the set a

retained extreme points, and a subproblem consisting of a

set of decoupled network flow problems with modified prices.

The master problem is simple to solve since it has only a

convexity constraint like (3.3) and nonnegativity

constraints on a number of variables only equal to the

number of retained extreme points. Furthermore, Hearn shows

that the method is convergent even if the master problem is

only solved approximately.

The decomposition of the penalized MCTP is formed in the

following manner. Let X be a matrix whose columns are

retained extreme points of F, and r be the number of points

retained. Then the master problem becomes

(MP) min q(hk,Xkw) = cxkw + P(hk,Xkw)

st: 1-w = I

w>0.

This resembles the Dantzig-Wolfe master problem, except that

the penalized joint capacity constraints now appear in the
r

objective function. Let xk = 7 Xnkwn = xkw be the optimal
n=l

solution to MP at iteration k, and JV be the set of

constraints violated at xk. The corresponding subproblem is

(SP) min q(hk,xk)x (3.4)

st x E F (3.5)
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where

Vq(hkxk) c+vP(hk,xk) = c+hkQ(xk)VQ(xk) = c+hk(Axk - b)+A

Comparing this form to the objective of the Dantzig-Wolfe

subproblem (3.5) reveals that -hk(Axk-bl)+ is an estimate

for the dual multipliers, uI . Thus, we make a new estimate

of the optimal multipliers based on the violations in the

current master problem. To avoid notational confusion, we

let Ulk = hk(Axk-bl)+ in the rest of this section. Now, if

xk solves SP and

A A

Vq(hk,xk)(xk-xk) > 0

AA

then xk solves PP for h = hk; otherwise (xk-xk) is a

favorable direction, so we add xk to the retained extreme

points and return to the master problem.

If xk is optimal in PP for h = hk and x* is optimal in

MCTP, then

q(hk,xk) < cx* , providing a lower bound on MCTP.

However, since xk is probably not an extreme point of F, we

must identify the facet of F containing xk and solve MP

exactly to establish this bound. We use other information

to provide intermediate bounds.

Recall that the Lagrangean relaxation of the linear

program, with uI fixed, may be written
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LR(u1 ) min (c - ulA)x + u1b1

st x E F

Using the set JV, associated with any solution to the master

problem, we let

A 0 if j i Jv (3.9)

Ulj = ^
j hX(AjX-blj) t-  

if j E J

and rewrite SP as

min (c + ulA)x

St X E F

Thus, we observe that

V(Ul)= Vq(hk,xk)xk - u1 bI , (3.10)

so at each iteration we compute u1bI as we compute new

subproblem costs and adjust the global lower bound whenever

(3.10) exceeds the current lower bound.

Since the penalized problem is convex, it is also

possible to linearize the objective function at xk to

establish lower bounds via

q(hk,xk) + 7q(hk,xk)(x-xk) < cx*

However, the following lemma establishes that the

linearization is always dominated by the value of the

Lagrangean relaxation with Ulk = h((Axk-bl)+)t - . For ease
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of presentation here, we use the non-standard vector form

[(Axk-bl)+] t , meaning (max(O,Ajxk-blj)]t for each element in

the vector, and we drop k from xk and Ulk.
A A A

Lemma 3.8: Let U, = h((Ax-bl)+] t-l at point x E F. Then

q(h,x) + Vq(h,x) (xk-x) < yV(ul) < cx*, where

xk = argmin (Vq(h,xk)x st X E F)

Proof: For uI = h((Ax-bl)+]t -l, vq(h,x) = (c+UlA). Now

q(h,x) + v q(h,x) (xk-x) = cx + P(h,x) + cxk +

VP(h,x)xk  - cx - P(h,x)x = cxk + P(h,x) +
VP(h,x)(xk-x) = (C+UlA)xk + P(hx) - VP(h,x)x since

VP(h,x) = h[(Ax-bl)+]t-iA = ulA. By definition,

-(u I ) = (C+UlA)xk - Ulbj < cx*, so our result is

proved if VP(h,xlx - P(h,x) a Ulb I. Now VP(h,x)x

P(h,x) = ujAx - 1h([(Ax-b) +1) 1(Ax-b) = 1Ax-

it ul (Ax-bl)+. But, since ulj - 0 whenever Ajx-blj

< 0, we see that

lA t- 1"ux- Ul(AX-bl)~ - n(-E )UlAx + Ub

Since UlAjx > uljbj for all J, then (t)ulAx +

uibl > ulbj. QED

The (relaxed) penalty form of MCTP produces a sequence

of infeasible x's which is only guaranteed to converge to x*

in the limit. Therefore, the penalty algorithm does not

naturally produce intermediate feasible solutions or upper

bounds. In general, this is unacceptable, so we rely on the
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improving nature of the sequence of x's, using projection

and restriction to generate intermediate feasible solutions

and upper bounds for MCTP.

Suppose h is fixed and x solves min q(h,x) for x E F.

Then, if xk solves the master problem at iteration k, either

ik = x or a favorable extreme point is added to the master

problem with

q i, +1 Sq (hf, k).

If xk = x, increasing h to h' > h and resolving MP over the

same extreme points yields

q(h,xk) 5 q(h',xk+l)

By sampling the sequence periodically as xk x* and forming

capacity allocation according to (2.11), yk = CA(xk) (with

scaling to allow non-integer solutions), we will form

allocations in RS(y) which improve as x improves, thus

obtaining improving feasible solutions and, therefore, upper

bounds. These resource allocations may be performed

whenever desired; we choose to do an allocation every rth

iteration where r is the number of retained extreme points.

The following lemma shows that the allocations must

eventually converge to an optimal allocation.

Lemma 3.9. Let Jxk) be a sequence solving MP as (hk) .

i yk CA(xk), and xyk solve RS(yk). Assuming
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the solutions are scaled to provide integer

allocations, as hk_)= , V(yk) - V* and

xyk - x*.

Proof: lim xk = x* for the penalty problem, where cx* is

optimal in MCTP (Luenberger, 1984, Chapter 12).

Since yk = CA(xk), as h - -, y* = lim yk ) CA(x*).

Since x* is feasible, ypj* > Xpj* for all p and j.

Thus V(y*) = cxy* < cx*. But Xy* is feasible in

MCTP by construction, so CXy* > cx*. Therefore

cxy* = cx*, and xy* solves MCTP. QED

The algorithm proceeds by iteratively solving the

subproblems and master problem, and periodically solving the

restriction to generate new feasible solutions. The value

of h is increased whenever

1) Vq(h,xk)(xk-xk) a 0,

2) RS(y) will be solved in the current iteration, or

3) min q(h,xk) < V.

The algorithm terminates when a feasible solution is

generated in the master problem, since it must be optimal,

or when

(V - V)/V < e

for some e > 0.

The algorithm uses the following additional notation:
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Xk = matrix of retained extreme points at iteration

xk = current master problem solution
xM = previous MP solution considered in current MP

Xk  a= a matrix formed by augmenting Xk with xM, written
X U XM

conv(X) = convex hull of X

JV = set of capacities violated by the kth solution to
MP

a > 1.0, a scalar multiplier for increasing h

x = current incumbent for MCTP

t = power of the penalty function, 1 < t < 2

r > 1, integer; maximum number of retained extreme
points

e > 0, a stopping parameter

CA(x) = a capacity allocation based on x using equation
- (2.11)
V,V= current upper and lower bounds on MCTP.

The Algorithm RSD(P):

Input: The network T = (I,J}, and joint capacity vector, b1
and, for products p = l,...,IPI, a cost vector, cp,
and supply/demand vector, b2

Output: Incumbent solution x, and incumbent value cx.

step 0 (Initialize): Select h° > 0, e > 0, a > 1, r > 1,

set k = 0

Solve LR(0), with xO optimal; set V = V(0)

Form Jv O = (jAjxO - blj > 0)

If JV = , stop with x° optimal

Else, set y = CA(x° )

Solve RS(y), with xy0 optimal; set V = V(y).
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If (V - V)V< e stop with incumbent X= Xy0

Else, set X0 O xM = x

step 1 (Solve Subproblem)

L~et xk= argmin{Vq(hk,^xk)xl X E F)

where

Vq(hk ,xk) = (c+ii1A) for Uj= h((Axk-bl)+)t-l

if q(hk,xk) (xk-xk) : 0, xk solves MCTPP for h =hk

set V =q(hk,xk)

if (V - )/V < e, exit with incumbent X-

Else hk = ahk

Go to step 2.

Else compute V(ul) = 7q(hk'xk)xk - u1b,

If V(u1 ) > V, V = uj

If (V - V)/V < e, exit with incumbent x

Else

i) If jXkj < r, Xk+l = xk u xk

ii) If iXki = r, drop the column of Xk which had
the smallest wn in convex combination forming
xk and replace it with xk to form Xk+1

XM = X

Set Xk+1 = Xk+l u xM

Step 2 (Solve Master Problem)

xk+l = argmin (q(hk~) conv(Xk))
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Discard all columns of Xk+l with wn = 0

Form the set JVk+l = {jIAjxk+l - blj > 0)

If k is an integer multiple of r, do a resource

allocation:

Set y = CA(xk+l)

Solve RS(y), with xyk+l optimal

If V(y) < V, set V = V(y), x = Xy

If (V - V)/V < e, exit with incumbent x

Else k = k+1

Go to step 1.

One possible difficulty with the penalty form of the

objective function is that only the prices associated with

the currently violated set of joint capacity constraints are

adjusted at each iteration. There is no intermediate

adjustment of multiplier values for constraints previously

but not currently violated. Furthermore, convergence to

optimal multiplier values for MCTP is guaranteed only in the

limit, that is, as h . These potential problems are

overcome by the augmented Lagrangean form of MCTP. As the

name suggests, the objective function is formed by adding a

penalty term to the standard Lagrangean dual form (Hestenes,

1975). Since the theory of this augmentation is developed

in terms of equality constraints, we express the joint

capacitation constraints of MCTP as

(Ajx-blj) + mj 2 = 0 for j J
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The augmented Lagrangean problem is then

min L(x,U,,h)
m,x

cx + [Ulj((Ajx-blj)+mj2+ hAjx-blj+mj212i, x F) J

with ul, h > 0.

Bertsekas (1982b) demonstrates that an equivalent

objective not requiring the variables m is

L(X,ul,h) = cx + ([max(O,Ulj+h(Ajx-blj))] 2 -Ulj 2)

This amounts to a multiplier update

ulk+l = max{Ouk +h(Ajx-blj)) for all j J

Using vector notation, the problem is stated as

min L(x,ul,h) = cx + P(x,ul,h)

st x - F
1

where P(x,ul,h) = (IIUl'1 2 - 11u1 11
2 )

and uI' = [u I + h(Ax-bl)] +

By analogy to the penalty version of the algorithm it is

easy to see that the subproblem, min ' L(x,ul,h)x for x F

may be restated as min(c+UlA)x, st. x F, and a lower bound

on MCTP is derived by computing min * L(xk,ul,h)xk-ub 1 .

Bertsekas points out certain advantages to solvinq this

augmented Lagrangean form of the problem. First, the method

will converge to an optimal solution for a finite value
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of h. Second, the rate of convergence of this augmented

form is superior to the penalty form, which depends on the

rate of increase of h, thus substituting convergence rate

for ill-conditioning concerns in the master problem.

We conclude this section by demonstrating that RSD(P) is

a convergent algorithm. Hearn, Lawphongpanich and Ventura

(1985) present a proof that RSD either terminates in a

finite number of iterations or generates a sequence (xk}

for which any subsequential limit is a solution. For the

penalized version of the MCTP the proof may be simplified,

relying on the simple assumption of a bounded feasible

region (i.e., 0 < Xp < b, < o.

In preparation for the main result, we first show that

solving the master problem for fixed h produces a sequence

of improving solutions (Hearn, et al, 1985).

Lemma 3.10: Let xk solve the restricted master problem at

iteration k, with h h. If xk is not

optimal in PP, then q(h ,xk+l) < q(h ,xk).

Proof: At iteration k, xk is the current iterate and xk

solves the subproblem with q(h,xk) (xk-xk) < 0.

Thus xk Xk+l and Xk+l =. Xk+l xk. Now let

xk*l = argminlq(h,x) s.t. x conv(Xk+l)). Then,

q(h,xk~l) : q(h,x k ) since xk xk+l. Now, if

q(hxk+l) q(h,xk), then xk also minimizes the
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master problem at iteration k+l and q(h,xk) (x-xk)

a 0 for all x Xk+l. But since xk Xk+!, this

contradicts the assumption that (xk-xk) is an

improving direction. QED

The main convergence result is stated as follows:

Lemma 3.11: Let F be a bounded, non-empty set of feasible

single commodity network flows. The RSD(P)

algorithm either solves PP for h - h in a

finite number of iterations or converges to

an optimal solution x as the limit of an

infinite sequence. Furthermore, as h is

increased to -, q(hx) - cx* and (x) -x,

where x* is an optimal solution to MCTP.

Proof: Let x solve min q(h,x) st x F. Since F is non-

empty and bounded, choose any starting point

xO E F, giving q(h,x) < q(h,xo) < '. Then at any

iteration either xk = x or

q(h,x) S q(h,xk+l) 5 q(h,x k ) S q(h,x° )

Letting dk = q(h,xk ) - q(h,xk+l), then 2 dk
k=0

q(h,x o ) - q(h,x), so lim dk = 0. Since only xk -=

varies, lim lxk-xk+li = 0 and, since lim q(h,xk)

q(h,x), then (xk) - x.

Since x - F, we set h to h > h and continue

the algorithm. By Lemmas 1 and 2, Section 1.2.1 of
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Luenberger 1'494,, qh, x- qrh.x x

by Section 12.1, Theorem I of Luenberqer ,

lettinq h , we have lis qfh,xi ' -x And

X Ix QED

.t is not necessary to solve qfh,xj !o optimal it f,,r

each valje of h to obtain -onvergence since all extreme

points of the current simplex are elements of r Thus,

whenever it is desirable, we may set a new h h and reoiovo

Ohe master problem with now objective function sin Ilh,x

cvor the same simplex to obtain a new xK The subproblem

osts are then based on q(h.xI, Appropriate opportunlties

. ntrease h have already been liscussed.

The pre:edlng proof demonstrates that the algorithm is

theoretA(,aAiy convergent without resource directive capacity

aI.o(at one. Indeed, bertsekas has shown that, for proper

,:hori,:e of sequence h), penalty algorithms may be

rquadratic(ally convergent (1982b). However, in practice,

awaiting converqence for large problems may be impractical.

Therefore, we use the resource allocation steps to help

obtain near-optimality quickly. As with the resource-

lirective approach discussed in Chapter I, we always employ

simple reallocation to obtain the best available solutions.
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IV. COMPUTATIONAL EXPERIENCE

The algorithms presented in Chapters II and III have

been coded in FORTRAN and tested on various versions of a

large scale MCTP using an IBM 3033AP under both VM and MVS

operating systems. For comparison, some four and ten

commodity problems have been solved using the X-system of

Brown and Graves (1974), which exploits the generalized

upper bound structure of the complicating constraints in the

MCTP a.id employs advanced starting solutions of the network

constraints. These control problems were solved using an

IBM 3081K, which is approximately twice as fast as the

3033AP for the X-system.

Throughout this chapter the following acronyms are used:

DDC - dual decomposition,

RDLB = resource direction with Lagrangean lower bounds,

RSD - restricted simplicial decomposition,

RSD(A) = RSD of the augmented Lagrangean form, and

RSD(P) - RSD of the penalty form.

The particular test problems used are described in Sec-

tion A, issues concerning individual procedures are studied

in Section B, and comparisons among algorithms are rresented

in Section C. Whenever the word "gap" is used to describe

the quality of a solution, it means (V-V)/V*, where V, V,

and V* are the upper and lower bounds, and optimal solution.
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A. TEST PROBLEMS

We demonstrate our methods on a transshipment model for

delivery over time of military products from production and

storage locations to overseas locations to support theatre

operations. The model covers five physical echelons,

including production plants, storage depots, ports of

embarkation, ports of debarkation, and geographic field

locations. Road, rail, sea, and air transportation are

modelled, and product demands are time-phased. Capacitation

occurs primarily on sea and air links, and as throughput

capacities on transfer points, requiring replication of some

echelons.

The objective of the model is to minimize deviation from

on-time deliveries. This is accomplished through a

specified set of backlogging arcs with graduated penalties

and a system of penalized "artificial" arcs which direct

flow around the network to satisfy "undeliverable" demands

and to equilibrate supply and demand. The products all use

a common unit of flow and incur a common cost on each arc.

The network is abstracted in Figure 4.1--a more detailed

description of the model may be found in Staniec (1984).

Computational tests use an underlying network of 3,300 nodes

and 10,400 arcs, of which 1,071 are subject to non-redundant

joint capacity constraints. A set of basic test problems of

between four and ten products is used for detailed inter-

and intra-method testing. Results of these tests are
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reported together in the following sections. Three

competitive methods are tested on a final 100 commodity test

problem in the last section to illustrate the effectiveness

of these methods on a typical, large-scale problem.

PA I OPOT OEPOT un PQE P00 P00 GLOC GL OC

1W i INIT.I IRV.

200

• IN. OUT ) .

Figure 4.1 Simplified Ammunition Distribution Model

The scope of our computational study is limited to

problems drawn from this one generic model, but we think

that these problems are generally quite difficult to solve.

Because of the explicit system of penalized artificials, the

costs range over five orders of magnitude, which have the

potential to cause difficulty in real arithmetic. Als '

86



because the model has multiple shipping modes, covers nine

spatial echelons, 21 time echelons, and has a large

backlogging system, repair of joint capacity violations

requires extensive effort. Therefore, these test problems

present a rigorous challenge for the solution algorithms.

We have graded the basic test problems used as easy (E)

or hard (H) based on two criteria. The first criterion is

the number of violations encountered in the first

relaxation. This parallels the criterion of Ali, et al.

(1984) in evaluating direct simplex methods used on some

medium-sized MCTPs: the number of tight joint capacity

constraints. The second criterion is the magnitude of the

initial violations, which is an indirect measure of the flow

changes required to reach the optimal solution. Together

these criteria affect the size of the gap between the

initial finite upper and lower bounds. This is evident in

the RSD and RDLB procedures, where the initial feasible

solutions are based upon allocations from the first

relaxation: the larger the violations, the poorer the

initial allocations. Among the problems we test, the most

difficult is 10H, on which RSD and RDLB generate a 56%

initial gap.

Test problem specifications and direct solution times by

the X-system are presented in Table 4.1. Initial gaps are

from the RSD algorithm.
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TABLE 4.1

OPTIMAL SOLUTIONS FOR BASIC TEST PROBLEMS

PROD. INIT. OPTIMAL SOL'N INIT. LARGEST X-SYSTEM
GRADE GAP VIOL. JIOL./ TIME (SEC)

(t1 ARC CAP. COLD_ HOT

4E 1 340,916,981 3 844/1458 1021

1OE 37 367,135,103 11 4,998/10,500 2586

4H 14 130,739,585 9 7,185/10,500 461.7 496.5

6H 35 138,525,451 13 10,048/10,500 3015.7 581.0

8H 45 143,526,951 15 13,861/10,500 2431.3 1067.6

1OH 54 169,532,339 20 13,861/10,500 5352 1393.5

IBM 3081K)

The 4-commodity problems have approximately 13,200

constraints and 41,600 variables: the 10-commodity problems

have about 33,000 constraints and 104,000 variables. Hot

start solutions use a pure network basis crash, and all

these solutions factor the joint capacitation constraints as

generalized upper bounds. However, pure network

factorization is not employed.

The principal motive for these runs is to establish

completely optimal yardsticks for the competing indirect

methods.
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8. INTRA-ALGORITHM STUDIES

We first discuss the selection of parameter settings for

the RSD algorithms, and then we discuss issues involving

DDC, including obtaining bounded master problem solutions

and cut dropping. For RSD(P), the parameters of interest

are the initial value of h, the h multiplier a, and the

penalty exponent, t. For RSD(A), we examine h and a, fixing

the exponent at 2.0. In our tests, initial values for h are

taken as a fraction of the largest cost used in the network,

in this case a bypass penalty cost of 62,700. Values tested

in RSD(P) were 627.0, 62.7, and 6.27. Other researchers

(e.g., Bertsekas, 1982) suggest penalty multipliers in the

range of 4 to 10 when solving the problem optimally for each

value of h. However, since we increase h frequently based

on periodic reallocations and lower bound adjustments,

penalty multiplier values between 1.5 and 4 are

investigated. Finally, to represent the range of possible

exponents we test the algorithm for t - 1.1, 1.5 and 2. The

exponent t - 1.0 is not useful in this algorithm since it

results in ulj - h for all j in JV at every iteration.

Table 4.2 summarizes response to changes in the size of

the penalty multiplier in RSD(P). The results indicate the

upper and lower bounds and final gap based on 21 iterations

of the algorithm for problems 4H and 10H. A multiplier of

1.5 seems to work best in the smaller problem, while 4.0
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TABLE 4.2

RESPONSE TO CHANGING PENALTY MULTIPLIER

PROD. MULT. INIT EXP LB UB GAP
a h ( 10 f 10 (t)

4H 2.0 6.27 2.0 130.4 130.74 .273

1.5 6.27 2.0 130.67 130.75 .061

2.0 6.27 1.5 129.7 130.74 .78

1.5 6.27 1.5 130.2 130.76 .44

10H 4.0 6.27 2.0 162 170.1 4.79

2.0 6.27 2.0 163.4 170.6 4.22

4.0 6.27 1.5 150.2 170.1 11.68

2.0 6.27 1.5 160.6 170.8 5.99

4.0 62.7 2.0 156.2 172 9.17

2.0 62.7 2.0 153.9 171.2 10.09

4.0 62.7 1.5 163.9 170.6 3.93

2.0 62.7 1.5 162.1 170.5 4.91

generally works best in the larger problem. However, in

both cases, the response is not substantially worse for a

multiplier of 2.0. Therefore, we fix the multiplier at 2.0

and concentrate further studies on the other two parameters.

Recalling that in the subproblems the gradient of the

penalty term provides an estimate of the optimal Lagrange

multipliers,

Ulk h((Axk-bl)+]t -l

it is evident that h and t work in concert to affect the

magnitude of the multiplier estimates at each iteration. We

want a combination which produces multiplier estimates large
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enough to generate new extreme points, yet small enough to

allow good lower bound estimates. That is, as ulkbl grows

large, V(Ulk) degrades as a lower bound estimate. Table 4.3

and Figure 4.2 show the response of RSD(P) to changes in h

and t. Results are for 21 iterations of the algorithm, with

the penalty multiplier fixed at 2.0 for all cases. In each

case we retain a maximum of seven extreme points plus the

current master problem solution, and perform a primal

resource allocation every seventh iteration.

We summarize the computational results as follows.

First, there is a distinct advantage to starting with a

small penalty parameter. Initial values of h = (max. arc

cost) x 10- 3 or 10-4 provide superior overall performance in

the test problems. Second, the penalty exponent t = 1.1

shows a definite overall disadvantage to values of 1.5 and

2.0. Both t = 1.5 and t = 2 perform well for an appropriate

matching value of h, but we favor t = 1.5 because it

provides the best overall final results, apparently reducing

the dominance of the most grossly violated arcs when

uI = h((Ajx-bl)+) "5 is computed.

Figure 4.2 graphically displays the interactions between

h and t in RSD(P) by depicting upper and lower bounds

relative to the optimal solution of problem 10H. The heavy

black lines suggest that the best response is with h = 62.7,

t = 1.5, but it appears that any choice of 0 < h < 70 and
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Figure 4.2 Response to Changing Parameters,
RSD(P) on Problem 10H

1.5 1 t < 2 will perform well. Note that the upper bound is

nearly optimal throughout the suggested range.

The parametric responses reported here suggest a simple

method for selecting appropriate starting parameters for the

penalty algorithm. First, we choose the h multiplier a

2.0 and set 1.5 < t < 2.0. Then we make an estimate, Ulj,

of the optimal dual variable associated with the most

violated constraint found when LR(O) is solved, and select h

so that
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h * max[(Ajx-blj)*] t -1  Uj

Better guesses of u 1 evidently evoke better performance of

the algorithm. In this case, we simply use a fraction of

the largest cost as our estimate; more sophisticated

estimates may be made by examining differences in custs

between least and most expensive paths through the network,

or by solving a single problem with aggregated

multicommodity supplies and demands. One point is clear

from the data: it is better to underestimate the best

initial value for h than to overestimate, because the

algorithm is quickly self-correcting for low estimates.

That is, if the initial penalty is so small that it does not

produce a new extreme point, the algorithm immediately (and

repeatedly) increases the penalty parameter until it does.

Furthermore, when the initial multiplier estimates are good,

the subproblems generate extreme points more closely related

to an optimal solution. Consequently, both lower bounds and

primal solutions quickly benefit. On the other hand,

excessively large penalties generate extreme points with

little relation to the optimal solution, producing poor

lower bounds and degrading the primal solutions obtained

through resource allocations.

Figure 4.3 shows the interactions of parameters for

RSD(A). In this case, we use a constant penalty exponent t

= 2.0, and vary h and a. As indicated by the response

surfaces in the figure, the best bounds are obtained for a
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combination of small initial penalty parameters and smaller

multipliers. We fix the multiplier at 1.2 in subsequent

tests. Again, the initial value of h may be calculated from

a ul estimate using

h x [max(Ajx°-blj) + ] Ulj

and the algorithm quickly corrects for underestimates but

recovers slowly from overestimates.

The computational experience presented by Hearn et al.

(1984) indicates that performance improves as the number of

retained extreme points is increased. In fact, if enough

points are retained, theoretically the heuristic becomes a

finite algorithm. Performance in our tests improves for up

to about eight points, and then levels off. As the number

of retained points increases, the time spent in the master

problem increases. In the following section, we fix the

number of retained points at eight and obtain quite

satisfactory performance.

Four performance issues concern us with algorithm DDC.

The first is reaching a bounded condition in the dual

master problem (or, equivalently, reaching a feasible

solution to the Dantzig-Wolfe master problem). Since the

constraint set of the dual master problem may be viewed as

forming a piecewise linear tangential approximation of the

Lagrangean dual function, we obtain no feasible primal
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Figure 4.3 Response to Changing Parameters,
RSD(A) on Problem 4H

solution until the set is bounded. In problem 10H, for

instance, this requires 6 iterations.

One method to obtain early boundedness is to perform a

resource allocation from the first relaxation, as in the RSD

algorithms, and append this information to the DDC master

problem as a "pseudocut." This method does provide an early

feasible solution and the first pseudocut seems to remain

binding for many iterations. However, our results show that

it does not improve the point at which boundedness is
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combination of small initial penalty parameters and smaller

multipliers. We fix the multiplier at 1.2 in subsequent

tests. Again, the initial value of h may be calculated from

a u1 estimate using

A

h x [max(Ajx°-blj)+ ] z Ujj

and the algorithm quickly corrects for underestimates but

recovers slowly from overestimates.

The computational experience presented by Hearn et al.

(1984) indicates that performance improves as the number of

retained extreme points is increased. In fact, if enough

points are retained, theoretically the heuristic becomes a

finite algorithm. Performance in our tests improves for up

to about eight points, and then levels off. As the number

of retained points increases, the time spent in the master

problem increases. In the following section, we fix the

number of retained points at eight and obtain quite

satisfactory performance.

Four performance issues concern us with algorithm DDC.

The first is reaching a bounded condition in the dual

master problem (or, equivalently, reaching a feasible

solution to the Dantzig-Wolfe master problem). Since the

constraint set of the dual master problem may be viewed as

forming a piecewise linear tangential approximation of the

Lagrangean dual function, we obtain no feasible primal
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naturally achieved in the master problem using cuts

generated by the subproblems, nor does it affect the

subsequent convergence trajectory.

Second, we must make an intelligent choice of the

decomposition tolerance e in the cut thresholds ub+e. e

acts as a relaxation parameter. If e is too small, we

restrict the size of our improvements in the dual

multipliers and inch uphill; if e is too large, we overshoot

good multiplier choices and may oscillate through a sequence

of extreme points which generate poor cuts and consequently

poor dual solutions. Moderation is a virtue in the choice

of e. For this set of test problems, we initially set e =

100,000 since no dual variable is expected to exceed 62,700

and obtain reasonable performance by reducing e by half

whenever e-optimality is achieved (i.e., whenever the cuts

cannot be satisfied). A final value ef terminates this

sequence of master problem relaxations.

Third, the decomposition goals are a daunting

complication at first glance. However, a goal constraint

for each master problem variable can be incorporated as a

generalized upper bound, and the resulting master problem

solved with very little additional effort.

Finally, we must consider the effects of accumulating

too many cuts in the master problem. As the number of

retained cuts grows, more time and space are required to

solve the master, and more time is required to regenerate
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solutions from peripheral storage. However as the

approximation to the dual response surface improves, many of

the earlier cuts become non-binding, either temporarily or

permanently. Figures 4.4 and 4.5 show cut histories for

problems 4H and 10H, respectively. In these figures, the

height of the "skyscraper" indicates the weight of the cuts

at each iteration. Both results show that only a few cuts

reenter a subsequent solution after once becoming slack, and

then only at a small dual weight.

0

0

I00

4f U, NUMBER

Figure 4.4 Active Cuts at Each Iteration
DDC on Problem 4H
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We take advantage of this property by restricting the

number of cuts retained to nhold - 20. We also use an

exponential moving average of the previous cut weightings

(master problem dual variables) to determine which cuts to

drop. In the (unlikely) event that a taut cut must be

replaced, the (upper bound) value of a recoverable primal

solution must be relaxed accordingly.

0

0
X 0

10 CUT 4UmBER

Figure 4.5 Active Cuts at Each Iteration
DDC on Problem 10H
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The master problems are best solved by using a basis

crash from the preceding solution in the sequence (except in

the rare cas, At a taut cut has been replaced).

For our )lems, the master problems have as many as

nhold = 20 (dense) cut constraints, and 1,071 decomposition

goal (GUB) constraints, one for each of the 1,071 variables.

Master problem solution times average 0.2 seconds (IBM 3033

AP).

The pure network subproblems have 3,300 nodes and 10,400

arcs, and solve in about 1 second per commodity. To reduce

these dominating computation times, a hot start mechanism is

used which initially restricts the network to those

variables known to have had positive flow in any prior

solution for that commodity. This restriction tends to

reduce solution time as more experience is gained over

iterations. After about 10 cuts, network subproblems rarely

use any new arc not used before.

The networks subproblems are much more expensive to

solve in DDC than the LP master problems. This is reversed

from experience with primal decomposition, for which the

master problems are commonly mixed integer LPs (e.g., see

Geoffrion and Graves, 1974, or Brown, Graves and

Honczarenko, 1983). Unfortunately, further mechanisms to

reduce network solution times require additional storage,

and we have limited our implementation to operating with a

default 2 M-byte VM/CMS region. Overlays are used for each
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commodity subproblem and the master problem. We do not want

to limit the number of commodities and have therefore used

no data structure spanning commodities.
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C. INTERMETHOD COMPARISONS

We now turn our attention to comparisons among the

various algorithms. We establish acceptable solution gaps

of 1% and 4% for the four and ten product problems,

respectively, for two reasons. First, for such large-scale

planning models, these levels of accuracy are adequate.

Second, in order to maintain integer arithmetic in the

network problems, we round multiplier estimates and capacity

allocations, inducing the possibility that exact optima to

the original problem have been excluded.

Figures 4.6 and 4.7 show the significant computational

advantage of RSD(A) over RDLB. For both test problems 4H

D
0

CD

- 0 5s 100 150 200 250
TIME (SECONDS)

Figure 4.6 Solution Trajectory Comparison (Problem 4H)
RSD(A) vs. RDLB
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Figure 4.7 Solution Trajectory Comparison (Problem 10H)
RSD(A) vs. RDLB

and 10H, the performance of the RDLB is much worse than

RSD(A) because the subgradient reallocations are generally

ineffective. In fact, although the subgradient realloca-

tions lead to an optimal solution for problem 4E (not shown)

no improvements are found for 10H, and improvements totaling

.007% out of an 11.8% gap are made in 4H, only by using an

exceedingly small rep size.

The poor primal performance of RDLB is compounded. by

slow convergence of the Lagrangean problem. As indicated by

the figures, it usually requires accumulation of three to
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five new subgradients before there is enough information

available to find a good conjugate direction and

substantially improve the lower bound. Since only a few

costs are typically changed in solving the second set of

network subproblems for the quadratic approximation to the

line search, we use the previous bases as a "hot restart,"

but the time savings is not adequate to make the algorithm

competitive in performance with the other algorithms. Even

though other lower bounding strategies are available for

testing, no further tests are performed on this algorithm

because of its combined poor performance on both lower and

upper bounds.

For the two test problems shown, the RDLB method

requires significantly longer to do less. The algorithm

terminates with final gaps of 5.83 and 10.7 percent, both

unacceptable by our stated standard. The primal bound is

relatively poor in both problems, corroborating the results

of other researchers (e.g., Allen (1985)) which show

subgradient-based resource direction unable to achieve an

optimal solution.

We now compare RSD(A) to RSD(P) (t = 1.5). In Figure

4.8, RSD(A) takes about 60 seconds on problem 4H to reach a

solution within .15% of optimal, while RSD(P) reaches a .69%

solution in under 120 seconds. In Figure 4.9, the augmented

form reaches a 4% solution to problem 10H in about 270

seconds and a 3.56% solution after 21 iterations in about
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Figure 4.8 Solution Trajectory Comparison
RSD(A) vs. RSD(P), Problem 4H

440 seconds. The penalty version takes nearly 470 seconds

to reach the 4% level, closing at 3.93%. The X-system on an

IBM 3081K solves this problem optimally in 1393.5 seconds

using the network hot-start procedure (5,352 seconds

without!). Considering the difference in computer speeds,

RSD(A) reaches an acceptable solution in 1/10 the time of

the X-system.

In comparing RSD(A) and RSD(P), we note not so much the

difference in performance times as the movement of the lower
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Figure 4.9 Solution Trajectory Comparisons
(Problem 10H) RSD(A) vs. RSD(P)

bounds. The bound for RSD(A) climbs more quickly than

RSD(P) apparently due to better instantaneous multiplier

estimates and the fact that h is increased in smaller steps

in RSD(A), resulting in a better-conditioned master problem

at each iteration. Complete convergence of bounds is not

anticipated for either algorithm, because we are rounding

the multiplier estimates to perform integer arithmetic in

the subproblems, we are not scaling the subproblems, and we

are retaining only eight points. However, the solutions
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obtained by both algorithms are adequate, especially since

the primal incumbents invariably seem to be very near

optimal.

Finally, Figures 4.10 and 4.11 compare the performance

of RSD(A) to the performance of DDC. For both problems 4H

and 10H, the RSD(A) algorithm significantly outperforms the

dual algorithm. While RSD takes about 60 seconds to reach a

solution within .15% of optimal in 4H, DDC required 160

seconds to reach a 1% solution and about 180 seconds to

reach a gap comparable to RSD(A).

in

ii

0

RSD(A) -.-0D --

0100 200 300
TIME (SECONDS)

Figure 4.10 Solution Trajectory Comparison

RSD(A) vs. DDC, Problem 4H
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Figure 4.11 Solution Trajectory Comparison
RSD(A) vs. DOC, Problem 10H

In 10H, the comparison is similar. RSD(A) reaches a 4%

solution in about 180 seconds and 3.56% in 440 seconds. DDC

terminates at 650 seconds after 50 iterations with an 8.5%

gap. These results are especially significant since the

dual decomposition algorithm has a reputation for rapid

initial progress. It is evident from both test problems

that the RSD(A) algorithm performed better both on the upper

and lower bounds.

1.08



Table 4.4 summarizes the final results for all

algorithms and basic test problems run on an IBM 3033AP.

Notice that RDLB runs reasonably well on 4E, but its times

and solution quality are unacceptable for the hard problems.

On the other hand, RSD(A) produces near-optimal primal

solutions, acceptable bounds, and fast times for each test

problem. The dual decomposition produces good final

results, but through a poorer trajectory, and shows signs of

laboring on problem 10H.

Finally, we construct a problem of 100 products to test

DDC and RSD(A). It has 31 initial capacity violations with

a maximum violation of 238% of arc capacity. Due to the

increase in problem size, the initial value of h is reduced

by a factor of 10 in RSD(A): no other changes have been

made. Figure 4.12 shows that RSD(A) reaches an acceptable

4% solution in about 1000 seconds and concludes 21

iterations in 3000 seconds with a 1.5% gap. DDC terminates

at 4090 seconds and 50 iterations with a 12.15% gap

remaining. We note that a previous effort on this same

problem using a resource-directive algorithm achieved an

11.8% solution in 1000 seconds (Staniec, 1984), but made no

further improvements in an hour of computation. The RSD(A)

algorithm achieved an acceptable solution in less than 17

minutes for a problem of some 330,000 constraints and

1,040,000 variables.
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V. CONCLUSION

We have presented three algorithms for solving large-

scale linear programs that fall within the general framework

of decomposition, with specific application to the MCTP.

The first algorithm, a resource-directive decomposition,

has contributed a new, simplified method of projecting

subgradient reallocations in the primal problems, and an

improved method for terminating the algorithm via conjugate

subgradient directions and approximate line searches in the

Lagrangean lower bounding routine. However, the method is

not computationally effective due to inability to find

improving subgradient reallocations and due to computational

burden in the line searches.

The second algorithm is a dual decomposition using a

master problem which is the relaxed dual of the standard

Dantzig-Wolfe master problem. Tests show the method to be

computationally effective, but with slow convergence for

very large problems.

The last algorithm (with two variants) is a new, non-

linear price-directive decomposition using a penalty

transformation of the original problem. Computational tests

show the method to be approximately ten times faster than a

direct simplex-based algorithm, and 2-3 times faster than

the dual decomposition tested.
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The initial success of the RSD algorithm prompts several

areas for further investigation. First, the test suite is

limited. We intend to test the algorithm on other large-

scale problems

Second, Hearn et al. (1984) suggest that quadratic

approximations to the master problem may speed its solution

significantly without degrading convergence rate. Bertsekas

(1982a) has described a projected Newton method for solving

non-linear objectives in the presence of simple constraints.

We propose development of a form of the Bertsekas algorithm

which is capable of handling the penalty transformation of

MCTP.

Third, it is reasonable to assume other non-linear

objectives may have attractive features. For instance, the

logarithmic barrier function has recently been the subject

of extensive research for solving linear programs (see, for

instance, Gill et al. (1986) or Karmarkar (1984)). We

propose investigating interior point forms of the algorithm,

with the possibility of developing a hybrid

interior/exterior point algorithm, taking advantage of both

penalty and barrier theory to solve linear programs.

Fourth, we propose a hybrid algorithm using the

augmented Lagrangean form of RSD combined with dual

decomposition to take advantage of the best properties of

both algorithms. Via RSD, we quickly generate good

estimates of the optimal dual multipliers, and therefore
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favorable extreme points. However, convergence slows due to

the restricted number of extreme points retained.

Increasing the extreme point count equates to increasing the

time spent solving the master problem. However, these

favorable extreme points may all be used to produce cuts for

the dual decomposition master problem, which can be solved

more quickly and precisely via linear programming. We

anticipate the result to be a hybrid algorithm which has

both favorable initial and terminal convergence properties.

Finally, we consider an extension of the algorithm from

the shipment planning to a shipment scheduling framework, in

which, for instance, we must make binary decisions on sea

shipment arcs to account for shiploads of material. This

will entail surrounding the RSD algorithm with a shell

capable of interpreting information to make binary

selections. One possible way to accomplish this is to

develop a specialized version of the cross-decomposition

algorithm of Van Roy (1986) which incorporates RSD.

In conclusion, the result of this research has been a

new, computationally attractive algorithm for large scale

linear programs using non-linear methods. Also, through the

computational results produced, it has documented some of

the shortcomings of the subgradient approach in resource

direction. It is evident that more information (e.g., a

formal Benders master problem) is required to solve

difficult problems by resource direction.
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APPENDIX

CONVEXITY OF THE QUADRATIC PENALTY FUNCTION

The following lemma demonstrates that the quadratic

penalty form of the MCTP is everywhere convex, which makes

it appropriate for the application of RSD. Convexity of

other penalty forms may be proved in a similar manner.

Lemma: The function, q(h,x) is convex for all

x F = {XINX = b2 ,0 < x < bl}.

Proof: q(h,x) = cx + P(h,x), where

P(h,x) h[(Ax-bl) + ] ' (Ax-bl) + . Since cx is

trivially convex and the sum of convex functions is

convex, we need only show P(h,x) to be convex; that

is, that

P(h,x) Z P(h,x) + VxP(h,x) (x-x), for all x E F

where VPx(h,x) = h[(Ax-bl) + ] 'A

Then we define JV = (JIAjx-blj > 0) and revert to

summation form. P(h,x) is convex if
1. A x b j +]2 >1 j-2--

h -h(AX-bl j )2 + [ h(Ajx-blj)A j (x-x).

J J JV jEJv
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Rewriting the left side as

h[(Ajx-bj))+j2 = h[(Ajx-blj)+] 2 + h[Ajx-blj)+3 2

and noting that h[UAjx-blj)+] 2 > 0 for all x
j/ V

we may prove convexity if

2h(Ax-lj+] > (1h(Ajx blj.)2 +h(Aj-b) x- )
i t iUj-b1 jEJV 2 x- +-ljA )J) x

or, considering additivity of convex functions, if

~-h(A~-b 1 )~I h[(Ajx-bl,~J + h(Ajx-blj)+Aj(x-x)

for all X E F, and j E V

If (Ajx-blj)+ = 0, the right side of the

inequality is 0, and h[(Ajx-b1 j)+3 2 > 0 trivially.

Now, for (Ajx-blj)+ > 0, letting uj = j-bj

dropping h we write

(Ajx-blj)2 +(Ajx-blj)Aj(x-x) 1- =ju(Ajx-blj) + uj(Ajx-Ajx)

= ui[Ajx-(blj - IAx-b1)jXbl]

= uj (Ajx-bij) 1-u2

convexity is proved if 2 L(~- 1 )J > uj(Ajx-

bjj) - 1 uj2 Two cases occur:
2-
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For all x (Ajx-blj) + = 0, then Ajx-blj < 0 and we

have ((Ajx-blj)+) 2 = 0 > uj(Ajx-blj) - uj 2

((AjX-blj)+]2 + (AjX-blj)+Aj(x-:).

For all x j (Ajx-blj) + > 0, we let uj = (Ajx-blj)
and note (-uj) 2 > 0.

But (uj-uj) 2 = 2 2ujuj + uj2 > 0, and uj2 >-
uj2 +2uj-uj, so multiplying by h and restoring

values, we have

1h[(Ajx-blj)+]2 1 h[(AiF-bj)+j2 + h(Aj-.blj)+Aj(x-X)

Since Pj(h,x) is convex for all j and the summation

of convex functions is convex, q(h,x) is convex.

QED
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